СОВРЕМЕННЫЙ ВЗГЛЯД НА ЭТИОПАТОГЕНЕЗ ПЕРВИЧНОЙ ОТКРЫТОУГОЛЬНОЙ ГЛАУКОМЫ В СВЕТЕ СОСУДИСТОЙ ТЕОРИИ РАЗВИТИЯ ГЛАУКОМНОЙ НЕЙРООПТИКОПАТИИ

Аннотация
Цель. На основе анализа современной литературы и собственных исследований установить тенденции в изучении актуальных анатомо-топографических особенностей строения сетчатки и диска зрительного нерва, влияющих на патогенез первичной открытоугольной глаукомы. Материал и методы. Проведен анализ источников отечественной и зарубежной литературы, а также результатов собственных исследований по проблеме развития первичной открытоугольной глаукомы и изучению вклада нейрососудистых нарушений в глаукоматозную нейродегенерацию. Результаты. Ганглиозные клетки сетчатки обладают высоким метаболизмом. Своевременная регуляция кровотока важна для снабжения нейронов в активных областях кислородом и глюкозой, необходимыми им для получения энергии. Многие пациенты с глаукомой страдают от сосудистого дефицита, включая снижение кровотока, нарушение ауторегуляции и дисфункцию нейрососудистой связи. Выводы. Снижение кровотока в ретробульбарных сосудах и сосудистой сети заднего полюса глазного яблока может свидетельствовать о сбое ауторегуляции кровоснабжения глаза. Поэтому изучение сосудистых механизмов имеет большую значимость с точки зрения профилактики и прогноза заболевания, а также возможности использования их в качестве мишени для фармакологической коррекции.
Литература
Мorizane Y, Morimoto N, Fujiwara A, Kawasaki R, Yamashita H, Ogura Y, Shiraga F. Incidence and causes of visual impairment in Japan: the first nation-wide complete enumeration survey of newly certified visually impaired individuals. Jpn J Ophthalmol. 2019;63(1):26-33. https://doi.org/10.1007/s10384-018-0623-4.
Hark LA, Myers JS, Rahmatnejad K, Wang Q, Zhan T, Hegarty SE, Leiby BE, Udyaver S, Waisbourd M, Leite S, Henderer JD, Pasquale LR, Lee PP, Haller JA, Katz LJ. Philadelphia Telemedicine Glaucoma Detection and Follow-up Study: Analysis of Unreadable Fundus Images. J Glaucoma. 2018;27(11):999-1008. https://doi.org/10.1097/IJG.0000000000001082.
Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre A, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, Calkins DJ. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener. 2022;17(1):23. https://doi.org/10.1186/s13024-022-00524-0.
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med. 2023;92:101193. https://doi.org/10.1016/j.mam.2023.101193.
Casson RJ, Chidlow G, Wood J. Comment on 'A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice by A. Korneva et al. Exp Eye Res. 2020;197:108073. https://doi.org/10.1016/j.exer.2020.108073.
Kurysheva NI, Parshunina OA, Shatalova EO, Kiseleva TN, Lagutin MB, Fomin AV. Value of Structural and Hemodynamic Parameters for the Early Detection of Primary Open-Angle Glaucoma. Curr Eye Res. 2017;42(3):411-417. https://doi.org/10.1080/02713683.2016.1184281.
McMonnies CW. Glaucoma history and risk factors. J Optom. 2017;10(2):71-78. https://doi.org/10.1016/j.optom.2016.02.003.
Kornfield TE, Newman EA. Regulation of blood flow in the retinal trilaminar vascular network. J Neurosci. 2014;34(34):11504-13. https://doi.org/10.1523/JNEUROSCI.1971-14.2014.
Hirano T, Chanwimol K, Weichsel J, Tepelus T, Sadda S. Distinct Retinal Capillary Plexuses in Normal Eyes as Observed in Optical Coherence Tomography Angiography Axial Profile Analysis. Sci Rep. 2018;8(1):9380. https://doi.org/10.1038/s41598-018-27536-5.
Wilkison SJ, Bright CL, Vancini R, Song DJ, Bomze HM, Cartoni R. Local Accumulation of Axonal Mitochondria in the Optic Nerve Glial Lamina Precedes Myelination. Front Neuroanat. 2021;15:678501. https://doi.org/10.3389/fnana.2021.678501.
Jonas JB, Wang N, Yang D, Ritch R, Panda-Jonas S. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog Retin Eye Res. 2015;46:67-83. https://doi.org/10.1016/j.preteyeres.2015.01.002.
Downs JC. Optic nerve head biomechanics in aging and disease. Exp Eye Res. 2015;133:19-29. https://doi.org/10.1016/j.exer.2015.02.011.
Newman A, Andrew N, Casson R. Review of the association between retinal microvascular characteristics and eye disease. Clin Exp Ophthalmol. 2018;46(5):531-552. https://doi.org/10.1111/ceo.13119.
Wareham LK, Calkins DJ. The Neurovascular Unit in Glaucomatous Neurodegeneration. Front Cell Dev Biol. 2020;8:452. https://doi.org/10.3389/fcell.2020.00452.
Romanchuk VV, Kudyrko LL. Analiz pokazatelej retrobul'barnogo krovotoka u pacientov s pervichnoj otkrytougol'noj glaukomoj. In: Zhuk IG, ed. Medicinskij universitet: sovremennye vzgljady i novye podhody. Sb. materialov Resp. nauch.-prakt. konf. s mezhdunar. uchastiem, posvjashh. 65-letiju GrGMU; 2023 Sent. 28-29; Grodno. Minsk; 2023. р. 410-412. (Russian).
Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN. Optical Coherence Tomography Angiography in Glaucoma. J Glaucoma. 2020;29(4):312-321. https://doi.org/10.1097/IJG.0000000000001463.
Shiga Y, Nishida T, Jeoung JW, Di Polo A, Fortune B. Optical Coherence Tomography and Optical Coherence Tomography Angiography: Essential Tools for Detecting Glaucoma and Disease Progression. Front Ophthalmol (Lausanne). 2023;3:1217125. https://doi.org/10.3389/fopht.2023.1217125.
Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol. 2015;133(9):1045-52. https://doi.org/10.1001/jamaophthalmol.2015.2225.
Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Invest Ophthalmol Vis Sci. 2016;57(9):OCT451-9. https://doi.org/10.1167/iovs.15-18944.
Wan KH, Lam AKN, Leung CK. Optical Coherence Tomography Angiography Compared With Optical Coherence Tomography Macular Measurements for Detection of Glaucoma. JAMA Ophthalmol. 2018;136(8):866-874. https://doi.org/10.1001/jamaophthalmol.2018.1627.
Moghimi S, Zangwill LM, Penteado RC, Hasenstab K, Ghahari E, Hou H, Christopher M, Yarmohammadi A, Manalastas PIC, Shoji T, Bowd C, Weinreb RN. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Ophthalmology. 2018;125(11):1720-1728. https://doi.org/10.1016/j.ophtha.2018.05.006.
Hormel TT, Jia Y, Jian Y, Hwang TS, Bailey ST, Pennesi ME, Wilson DJ, Morrison JC, Huang D. Plexus-specific retinal vascular anatomy and pathologies as seen by projection-resolved optical coherence tomographic angiography. Prog Retin Eye Res. 2021;80:100878. https://doi.org/10.1016/j.preteyeres.2020.100878.
Liu L, Edmunds B, Takusagawa HL, Tehrani S, Lombardi LH, Morrison JC, Jia Y, Huang D. Projection-Resolved Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. Am J Ophthalmol. 2019;207:99-109. https://doi.org/10.1016/j.ajo.2019.05.024.
Kiyota N, Shiga Y, Omodaka K, Pak K, Nakazawa T. Time-Course Changes in Optic Nerve Head Blood Flow and Retinal Nerve Fiber Layer Thickness in Eyes with Open-angle Glaucoma. Ophthalmology. 2021;128(5):663-671. https://doi.org/10.1016/j.ophtha.2020.10.010.
Romanchuk VV, Krotkova AA, Semjanovich TV. Issledovanie tolshhiny horioidei u pacientov s pervichnoj otkrytougol'noj glaukomoj. In: Zhuk IG, editor. Sbornik materialov respublikanskoj nauchno-prakticheskoj konferencii studentov i molodyh uchenyh, posvjashhennoj 100-letiju so dnja rozhdenija professora Turevskogo Abrama Arkad'evicha; 2023 Аpr. 27-28; Grodno. Grodno; 2023. p. 659-660. edn: RZJVBY.(Russian).
Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol. 2015;133(9):1045-52. https://doi.org/10.1001/jamaophthalmol.2015.2225.
Prada D, Harris A, Guidoboni G, Siesky B, Huang AM, Arciero J. Autoregulation and neurovascular coupling in the optic nerve head. Surv Ophthalmol. 2016;61(2):164-86. https://doi.org/10.1016/j.survophthal.2015.10.004.
Costa VP, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Lovasik J, Stalmans I, Zeitz O, Lanzl I, Gugleta K, Schmetterer L. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014;92(4):e252-66. https://doi.org/10.1111/aos.12298.
Guidoboni G, Harris A, Cassani S, Arciero J, Siesky B, Amireskandari A, Tobe L, Egan P, Januleviciene I, Park J. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest Ophthalmol Vis Sci. 2014;55(7):4105-18. https://doi.org/10.1167/iovs.13-13611.
Iwase C, Iwase T, Tomita R, Akahori T, Yamamoto K, Ra E, Terasaki H. Changes in pulse waveforms in response to intraocular pressure elevation determined by laser speckle flowgraphy in healthy subjects. BMC Ophthalmol. 2021;21(1):303. https://doi.org/10.1186/s12886-021-02070-7.
Luft N, Wozniak PA, Aschinger GC, Fondi K, Bata AM, Werkmeister RM, Schmidl D, Witkowska KJ, Bolz M, Garhöfer G, Schmetterer L. Ocular Blood Flow Measurements in Healthy White Subjects Using Laser Speckle Flowgraphy. PLoS One. 2016;11(12):e0168190. https://doi.org/10.1371/journal.pone.0168190.
Gardiner SK, Cull G, Fortune B. Retinal Vessel Pulsatile Characteristics Associated With Vascular Stiffness Can Predict the Rate of Functional Progression in Glaucoma Suspects. Invest Ophthalmol Vis Sci. 2023;64(7):30. https://doi.org/10.1167/iovs.64.7.30.
Wang L, Cull G, Burgoyne CF, Thompson S, Fortune B. Longitudinal alterations in the dynamic autoregulation of optic nerve head blood flow revealed in experimental glaucoma. Invest Ophthalmol Vis Sci. 2014;55(6):3509-16. https://doi.org/10.1167/iovs.14-14020.
Haider AA, Rex TS, Wareham LK. cGMP Signaling in the Neurovascular Unit-Implications for Retinal Ganglion Cell Survival in Glaucoma. Biomolecules. 2022;12(11):1671. https://doi.org/10.3390/biom12111671.
Wang R, Li K, Wang H, Jiao H, Wang X, Zhao J, Lin H. Endogenous CSE/Hydrogen Sulfide System Regulates the Effects of Glucocorticoids and Insulin on Muscle Protein Synthesis. Oxid Med Cell Longev. 2019;2019:9752698. https://doi.org/10.1016/j.niox.2017.09.006.
Misak A, Grman M, Bacova Z, Rezuchova I, Hudecova S, Ondriasova E, Krizanova O, Brezova V, Chovanec M, Ondrias K. Polysulfides and products of H2S/S- nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2. Nitric Oxide. 2018;76:136-151. https://doi.org/10.1016/j.niox.2017.09.006.
Wareham LK, Calkins DJ. The Neurovascular Unit in Glaucomatous Neurodegeneration. Front Cell Dev Biol. 2020;8:452. https://doi.org/10.3389/fcell.2020.00452.
Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017;96(1):17-42. https://doi.org/10.1016/j.neuron.2017.07.030.
Kugler EC, Greenwood J, MacDonald RB. The "Neuro-Glial-Vascular" Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Front Cell Dev Biol. 2021;9:732820. https://doi.org/10.3389/fcell.2021.732820.
O'Leary F, Campbell M. The blood-retina barrier in health and disease. FEBS J. 2023;290(4):878-891. https://doi.org/10.1111/febs.16330.
Pfeiffer T, Li Y, Attwell D. Diverse mechanisms regulating brain energy supply at the capillary level. Curr Opin Neurobiol. 2021;69:41-50. https://doi.org/10.1016/j.conb.2020.12.010.
Romanchuk VV, Strizhak AJ, Krotkova AA, Brit'ko SL. Ocenka pokazatelej srodstva gemoglobina k kislorodu u pacientov s pervichnoj otkrytougol'noj glaukomoj. In: Zhuk IG, editor. Aktual'nye problemy mediciny. Sbornik materialov itogovoj nauchno-prakticheskoj konferencii; 2023 Jan. 26; Grodno. Grodno; 2023. p. 325-326. edn: YFKTNO. (Russian).
Inman DM, Harun-Or-Rashid M. Metabolic Vulnerability in the Neurodegenerative Disease Glaucoma. Front Neurosci. 2017;11:146. https://doi.org/10.3389/fnins.2017.00146.
Belforte N, Agostinone J, Alarcon-Martinez L, Villafranca-Baughman D, Dotigny F, Cueva Vargas JL, Di Polo A. AMPK hyperactivation promotes dendrite retraction, synaptic loss, and neuronal dysfunction in glaucoma. Mol Neurodegener. 2021;16(1):43. https://doi.org/10.1186/s13024-021-00466-z.
Quintero H, Shiga Y, Belforte N, Alarcon-Martinez L, El Hajji S, Villafranca-Baughman D, Dotigny F, Di Polo A. Restoration of mitochondria axonal transport by adaptor Disc1 supplementation prevents neurodegeneration and rescues visual function. Cell Rep. 2022;40(11):111324. https://doi.org/10.1016/j.celrep.2022.111324.
Gericke A, Mann C, Zadeh JK, Musayeva A, Wolff I, Wang M, Pfeiffer N, Daiber A, Li H, Xia N, Prokosch V. Elevated Intraocular Pressure Causes Abnormal Reactivity of Mouse Retinal Arterioles. Oxid Med Cell Longev. 2019;2019:9736047. https://doi.org/10.1155/2019/9736047.
Mann C, Anders F, Liu H, Brockhaus K, Liu A, Grus FH, Pfeiffer N, Thanos S, Prokosch V. Morphological and Quantitative Changes in Retinal and Optic Nerve Vessels in Experimental Glaucoma Model with Elevated IOP for 7 Weeks. Klin Monbl Augenheilkd. 2019;236(7):871-876. https://doi.org/10.1055/s-0044-101617.
Brockhaus K, Melkonyan H, Prokosch-Willing V, Liu H, Thanos S. Alterations in Tight- and Adherens-Junction Proteins Related to Glaucoma Mimicked in the Organotypically Cultivated Mouse Retina Under Elevated Pressure. Invest Ophthalmol Vis Sci. 2020;61(3):46. https://doi.org/10.1167/iovs.61.3.46.
Alarcon-Martinez L, Shiga Y, Villafranca-Baughman D, Belforte N, Quintero H, Dotigny F, Cueva Vargas JL, Di Polo A. Pericyte dysfunction and loss of interpericyte tunneling nanotubes promote neurovascular deficits in glaucoma. Proc Natl Acad Sci USA. 2022;119(7):e2110329119. https://doi.org/10.1073/pnas.2110329119.
Kim KJ, Ramiro Diaz J, Iddings JA, Filosa JA. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons. J Neurosci. 2016;36(50):12624-12639. https://doi.org/10.1523/JNEUROSCI.1300-16.2016.