РОЛЬ ОЗОНА В АДАПТИВНЫХ ИЗМЕНЕНИЯХ ЭРИТРОЦИТАРНОГО ЗВЕНА

  • Е. С. Билецкая Гродненский государственный медицинский университет, Гродно, Беларусь https://orcid.org/0000-0001-8967-2919
  • В. В. Зинчук Гродненский государственный медицинский университет, Гродно, Беларусь https://orcid.org/0000-0002-3077-0474
Ключевые слова: озон, кровь, кислород, газотрансмиттер, монооксид азота, сероводород

Аннотация

Проведен анализ литературных и собственных данных по исследованию механизмов физиологического действия озона на эритроцитарное звено системы крови. Обсуждается влияние озона на кислородсвязывающую функцию крови и ее прооксидантно-антиоксидантый баланс. Данный эффект этого газа в условиях изменения активности системы газотрансмиттеров (монооксида азота и сероводорода) и разных значений парциального давления кислорода и углекислого газа проявляется разным образом. Противогипоксическое действие озона осуществляется за счет стимуляции наработки газотрансмиттеров (NO и H2S), реализующих свое влияние в том числе и через формирование сродства гемоглобина к кислороду, что обосновывает его использование в качестве средства, улучшающего адаптационные и антигипоксические возможности организма.

Литература

Tsvetkova AV, Koneva ES, Malutin DS, Lysak AM, Kostenko AA. Efficacy of including ozone therapy in comprehensive rehabilitation programmes for post-covid syndrome. Resort medicine. 2022;(2):152-158. https://doi.org/10.51871/2304-0343_2022_2_152. https://www.elibrary.ru/xdbgzg. (Russian).

Moreno-Fernández A, Macías-García L, Valverde-Moreno R, Ortiz T, Fernández-Rodríguez A, Moliní-Estrada A, De-Miguel M. Autohemotherapy with ozone as a possible effective treatment for Fibromyalgia. Acta Reumatol Port. 2019;44(3):244-249.

Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis. 2018;70:13-42. https://doi.org/10.1016/j.bcmd.2017.10.006.

Giunta R, Coppola A, Luongo C, Sammartino A, Guastafierro S, Grassia A, Giunta L, Mascolo L, Tirelli A, Coppola L. Ozonized autohemotransfusion improves hemorheological parameters and oxygen delivery to tissues in patients with peripheral occlusive arterial disease. Ann Hematol. 2001;80(12):745-8. https://doi.org/10.1007/s002770100377.

Derjugina AV, Galkina JaV, Martusevich AA, Simutis IS, Bojarinov GA. Rol ozona v izmeneniji aktivnosti Na-K-ATFazy i soderzhanii ATF i 2,3-DFG v eritrocitah krovi pri modelirovanii ostroj krovopoteri u krys. Bioradikaly i antioksidanty. 2016:3(3):33-35. edn: ZURGOH. (Russian).

Zinchuk VV, Biletskaya ES. Different dosage effects of ozone on oxygen transport in blood during in vitro experiments. Biophysics. 2020;65(5):915-919. https://doi.org/10.31857/S0006302920050099. https://www.elibrary.ru/lolkci. (Russian).

Shanazarov NA, Lisovska NYu, Lisovsky ЕV, Shakirova AF. The capability of ozonotherapy in rehabilitation of oncological patients (literature review). Nauchnoe obozrenie. Medicinskie nauki. 2016;2:113-119. edn: WLXIBT. (Russian).

Katiukhin LN. Influence of the course of treatment by injections of ozonized saline on rheological properties of erythrocytes in patients with complex pathology. Human Physiology. 2016;42(6):672-677. https://doi.org/10.7868/S013116461605009X. https://www.elibrary.ru/xgwdhx. (Russian).

Zinchuk VV, Bileckaja ES, Guljaj IJe. Effekty ozona na kislotno-osnovnoje sostojanije krovi v opytah in vitro. Novosti mediko-biologicheskih nauk. 2018;17(2):40-44. edn: FMHZOE. (Russian).

Grechkanev GO, Kontorshhikova KN, Kachalina TS. Eksperimentalnoje obosnovanije ozonoterapii akusherskih oslozhnenij. Nizhegorodskij medicinskij zhurnal. 2002;1:20-25. (Russian).

Peretyagin SP. Kontorshikova KN, Martusevich AA. The assessment of the effect of different ozone doses on the processes of lipid peroxidation and oxygen supply of blood in vitro. Medicinskij almanah. 2012;2(21):101-104. edn: OXQKVP. (Russian).

Deryugina AV, Galkina YaV, Simutis IS, Boyarinov GA, Martusevich AA. Experimental substantiation of the use of ozone in transfusion therapy of blood loss in rats. Proceedings of the RAS Ufa Scientific Centre. 2017;(1):41-45. edn: YHQYTT. (Russian).

Gvozdenko TA, Kytikova OJu, Ivanov EM. Biooxidative technologies in pulmonology (review). Bulletin physiology and pathology of respiration. 2011;(41):79-81. edn: ODABZB. (Russian).

Zinchuk VV, Biletskaya ES, Gulyai IE. Effect of ozone on blood oxygen transport function and pro-oxidant-antioxidantbalance in under conditions of changing nitrogen monoxide formation in vitro experiments. Russian Journal of Physiology. 2021;107(1):16-27. https://doi.org/10.31857/S0869813921010106. https://www.elibrary.ru/zhpdow. (Russian).

Seyam O, Smith NL, Reid I, Gandhi J, Jiang W, Khan SA. Clinical utility of ozone therapy for musculoskeletal disorders. Med Gas Res. 2018;8(3):103-110. https://doi.org/10.4103/2045-9912.241075.

Lo Faro ML, Fox B, Whatmore JL, Winyard PG, Whiteman M. Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide. 2014;41:38-47. https://doi.org/10.1016/j.niox.2014.05.014.

Onal O, Yetisir F, Sarer AE, Zeybek ND, Onal CO, Yurekli B, Celik HT, Sirma A, Kılıc M. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat. Mediators Inflamm. 2015;2015:792016. https://doi.org/10.1155/2015/792016.

Zinchuk VV, Biletskaya ES. Impakt of ozone on the oxyge affinity blood properties and prooxidant-antioxidant balance under effect of H2S-generating system. Russian Journal of Physiology. 2023;109(6):760-770. https://doi.org/10.31857/S0869813923060080. https://www.elibrary.ru/whitzf. (Russian).

Fadyukova OE, Koshelev VB. Effect of Hydrogen Sulfide on Deformability of Rat Erythrocytes. Bulletin of Experimental Biology and Medicine. 2020;169(6):725-728. https://doi.org/10.1007/s10517-020-04965-9. https://www.elibrary.ru/atazek.

Golubkina E, Trizno M, Dyukareva O, Trizno N, Lagutkina L. Evolution of concepts concerning significance of hydrogen sulfide in age-dependent pathology development. Herald of Education and Science Development of Russian Academy of Natural Sciences. 2021;(3):69-81. https://doi.org/10.26163/RAEN.2021.94.14.011. https://www.elibrary.ru/imvbpo. (Russian).

Sojitra B, Bulani Y, Putcha UK, Kanwal A, Gupta P, Kuncha M, Banerjee SK. Nitric oxide synthase inhibition abrogates hydrogen sulfide-induced cardioprotection in mice. Mol Cell Biochem. 2012;360(1-2):61-9. https://doi.org/10.1007/s11010-011-1044-6.

Zinchuk VV, Biletskaya ES. Effect of Ozone on Oxygen Transport and Pro-Oxidant-Antioxidant Balance of Red Blood Cell Suspension. Acta Chim Slov. 2023;70(2):226-230. https://doi.org/10.17344/acsi.2023.8032.

Kishimoto S, Maruhashi T, Kajikawa M, Matsui S, Hashimoto H, Takaeko Y, Harada T, Yamaji T, Han Y, Kihara Y, Chayama K, Goto C, Yusoff FM, Nakashima A, Higashi Y. Hematocrit, hemoglobin and red blood cells are associated with vascular function and vascular structure in men. Sci Rep. 2020;10(1):11467. https://doi.org/10.1038/s41598-020-68319-1.

Richardson KJ, Kuck L, Simmonds MJ. Beyond oxygen transport: active role of erythrocytes in the regulation of blood flow. Am J Physiol Heart Circ Physiol. 2020;319(4):H866-H872. https://doi.org/10.1152/ajpheart.00441.2020.

Zheng S, Krump NA, McKenna MM, Li YH, Hannemann A, Garrett LJ, Gibson JS, Bodine DM, Low PS. Regulation of erythrocyte Na+/K+/2Cl- cotransport by an oxygen-switched kinase cascade. J Biol Chem. 2019;294(7):2519-2528. https://doi.org/10.1074/jbc.RA118.006393.

Wiegman CH, Li F, Ryffel B, Togbe D, Chung KF. Oxidative Stress in Ozone-Induced Chronic Lung Inflammation and Emphysema: A Facet of Chronic Obstructive Pulmonary Disease. Front Immunol. 2020;11:1957. https://doi.org/10.3389/fimmu.2020.01957.

Zinchuk VV, Stepuro TL. NO-zavisimyje mehanizmy vnutrieritrocitarnoj reguljacii srodstva gemoglobina k kislorodu. Grodno: GrGMU; 2016. 176 p. edn: YQMGPV. (Russian).

Rifkind JM, Nagababu E. Hemoglobin redox reactions and red blood cell aging. Antioxid Redox Signal. 2013;18(17):2274-83. https://doi.org/10.1089/ars.2012.4867.

Biletskaya ES, Zinchuk VV, Muravyov AV, Gulyai IE, Dorohin КМ. Vklad gazotransmitterov (NO, H2S) v jeffekt ozona na kislorodzavisimye processy krovi v uslovijah oksigenacii. News оf Вiomеdical Sciences. 2021;21(2):18-24. edn: ISUWMZ. (Russian).

Kuhn V, Diederich L, Keller TCS 4th, Kramer CM, Lückstädt W, Panknin C, Suvorava T, Isakson BE, Kelm M, Cortese-Krott MM. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal. 2017;26(13):718-742. https://doi.org/10.1089/ars.2016.6954.

Olson KR, Gao Y, DeLeon ER, Arif M, Arif F, Arora N, Straub KD. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biol. 2017;12:325-339. https://doi.org/10.1016/j.redox.2017.02.021.

Gao T, Wang Z, Cao J, Dong Y, Chen Y. Melatonin alleviates oxidative stress in sleep deprived mice: Involvement of small intestinal mucosa injury. Int Immunopharmacol. 2020;78:106041. https://doi.org/10.1016/j.intimp.2019.106041.

Osikov MV, Davydova EV, Abramov KS. Processes of free-radical oxidation and promising directions of correction of redox status in isolated femoral bone fractures. Modern problems of science and education. 2019;(2):95. edn: HVLROK. (Russian).

Zinchuk VV, Biletskaya ES. Features of ozone effect on oxygen-dependent processes in the blood under hypoxic conditions. Regional Blood Circulation and Microcirculation. 2021;20(3):70-76. https://doi.org/10.24884/1682-6655-2021-20-3-70-76. https://www.elibrary.ru/gicmmf.

He S, Chen W, Xia J, Lai Z, Yu D, Yao J, Cai S. Effects of ozone autohemotherapy on blood VEGF, TGF-β and PDGF levels after finger replantation. Ann Palliat Med. 2020;9(5):3332-3339. https://doi.org/10.21037/apm-20-1467.

Jaitovich A, Jourd'heuil D. A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension. Adv Exp Med Biol. 2017;967:71-81. https://doi.org/10.1007/978-3-319-63245-2_6.

Jin Z, Zhang Q, Wondimu E, Verma R, Fu M, Shuang T, Arif HM, Wu L, Wang R. H2S-stimulated bioenergetics in chicken erythrocytes and the underlying mechanism. Am J Physiol Regul Integr Comp Physiol. 2020;319(1):R69-R78. https://doi.org/10.1152/ajpregu.00348.2019.

Zheng M, Zeng Q, Shi XQ, Zhao J, Tang CS, Sun NL, Geng B. Erythrocytic or serum hydrogen sulfide association with hypertension development in untreated essential hypertension. Chin Med J (Engl). 2011;124(22):3693-701.

Tabassum R, Jeong NY. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. Int J Med Sci. 2019;16(10):1386-1396. https://doi.org/10.7150/ijms.36516.

Zinchuk VV, Muravyov AV, Biletskaya ES, Mikhailov PV, Tikhomirova IA, Ostroumov RS, Zamyshlyaev AV. Effect of gasotransmitters and ozone on erythrocyte microrheology and blood oxygen transport function. Tromboz, Gemostaz i Reologia. 2022;(2):73-83. https://doi.org/10.25555/THR.2022.2.1022. https://www.elibrary.ru/chmrto. (Russian).

Madsen H, Ditzel J. Red cell 2,3-diphosphoglycerate and hemoglobin–oxygen affinity during normal pregnancy. Acta Obstet Gynecol Scand. 1984;63(5):399-402. https://doi.org/10.3109/00016348409156691.

Torbin A, Pershin A, Azyazov V. Ozone regeneration in the O-O2-O3 mixture Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2014;16(4):17-21. edn: SZGQQX. (Russian).

Zhang R, Hess DT, Qian Z, Hausladen A, Fonseca F, Chaube R, Reynolds JD, Stamler JS. Hemoglobin βCys93 is essential for cardiovascular function and integrated response to hypoxia. Proc Natl Acad Sci U S A. 2015;112(20):6425-30. https://doi.org/10.1073/pnas.1502285112.

Smith NL, Wilson AL, Gandhi J, Vatsia S, Khan SA. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med Gas Res. 2017;7(3):212-219. https://doi.org/10.4103/2045-9912.215752.

Zinchuk VV, Biletskaya ES, Gulyai IE. Features of ozone effect on the oxygen-dependent blood processes under hypercapnia conditions. Biomeditsinskaya khimiya. 2022;68(3):212-217. https://doi.org/10.18097/PBMC20226803212. https://www.elibrary.ru/fnobrd. (Russian).

Tsikas D, Sutmöller K, Maassen M, Nacke M, Böhmer A, Mitschke A, Konrad H, Starke H, Hummler H, Maassen N. Even and carbon dioxide independent distribution of nitrite between plasma and erythrocytes of healthy humans at rest. Nitric Oxide. 2013;31:31-7. https://doi.org/10.1016/j.niox.2013.03.002.

Belykh IA, Volovelskaya EL, Zinchenko VD. Effect of Low Ozone Doses on Erythrocyte Hypertonic Lysis. Problems of Cryobiology. 2007;17(3):237-242. (Russian).

Akbudak IH, Kucukatay V, Kilic-Erkek O, Ozdemir Y, Bor-Kucukatay M. Investigation of the effects of major ozone autohemotherapy application on erythrocyte deformability and aggregation. Clin Hemorheol Microcirc. 2019;71(3):365-372. https://doi.org/10.3233/CH-180417.




Загрузок PDF: 165
Опубликован
2023-11-02
Как цитировать
1.
Билецкая ЕС, Зинчук ВВ. РОЛЬ ОЗОНА В АДАПТИВНЫХ ИЗМЕНЕНИЯХ ЭРИТРОЦИТАРНОГО ЗВЕНА. Журнал ГрГМУ (Journal GrSMU) [Интернет]. 2 ноябрь 2023 г. [цитируется по 24 декабрь 2024 г.];21(5):443-52. доступно на: http://journal-grsmu.by/index.php/ojs/article/view/3088

Наиболее читаемые статьи этого автора (авторов)