АЦЕТИЛЦИСТЕИН: БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ И ПОТЕНЦИАЛЬНЫЕ ТЕРАПЕВТИЧЕСКИЕ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ В КЛИНИКЕ
Аннотация
Цель. Провести расширенный анализ литературных источников, изучить биологическую активность, биодоступность ацетилцистеина и потенциальные возможности препарата в коррекции окислительного стресса и воспалительной реакции при патологических состояниях и заболеваниях в клинике, а также эффективность его парентерального применения при экспериментальном иммуногенном увеите.
Материал и методы. Проанализированы источники отечественной и зарубежной литературы по проблеме окислительного стресса и антиоксидантной защиты, роли ацетилцистеина (АЦЦ) в коррекции окислительного стресса, восстановлении внутриклеточного пула глутатиона и потенциальных возможностях применения АЦЦ в клинике при разных патологических состояниях и заболеваниях, включая воспалительные и дегенеративные заболевания органа зрения.
Результаты. АЦЦ – одно из наиболее перспективных и безопасных фармакологических средств для коррекции окислительного стресса при воспалительных заболеваниях, сопровождающихся истощением внутриклеточного пула глутатиона. АЦЦ обладает антиоксидантными, противовоспалительными, иммуномодулирующими, антимикробными, противовирусными, детоксикационными, цитопротекторными и антиканцерогенными свойствами. Его антиоксидантный эффект реализуется через прямой и непрямой механизмы. Непрямое антиокислительное действие АЦЦ реализуется восполнением внутриклеточного пула глутатиона.
Выводы. АЦЦ позволяет решить важнейшую проблему доставки цистеина, как лимитирующего звена синтеза глутатиона, в клетку. АЦЦ обладает многовекторным, разнонаправленным действием, оказывает влияние на транскрипционные факторы, ответственные за развитие воспаления, пролиферацию клеток, апоптоз, поддержание редокс-гомеостаза в организме. На сегодняшний день ацетилцистеин – одно из наиболее перспективных фармакологических средств для коррекции окислительного стресса при заболеваниях, сопровождающихся истощением внутриклеточного пула глутатиона
Литература
Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev. 2016;2016:3164734. https://doi.org/10.1155/2016/3164734
Ung L, Pattamatta U, Carnt N, Wilkinson-Berka JL, Liew G, White AJR. Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci. 2017;131(24):2865-2883. https://doi.org/10.1042/CS20171246
Yadav UC, Kalariya NM, Ramana KV. Emerging role of antioxidants in the protection of uveitis complications. Curr Med Chem. 2011;18(6):931-942. https://doi.org/10.2174/092986711794927694
Kumar Rajendran N, George BP, Chandran R, Tynga IM, Houreld N, Abrahamse H. The Influence of Light on Reactive Oxygen Species and NF-кB in Disease Progression. Antioxidants (Basel). 2019;8(12):640. https://doi.org/10.3390/antiox8120640
Dziubla T, Butterfield DA, editors. Oxidative stress and biomaterials. London: Academic Press; 2016. Chap. 2, Chatterjee S. Oxidative Stress, Inflammation, and Disease; p. 35-58. https://doi.org/10.1016/B978-0-12-803269-5.00002-4
Labrou N, Flemetakis E, editors. Glutathione: Biosynthesis, Mechanism of Action and biotechnological implications. New York: Nova Science; 2013. Chap. 1, Pavarino EC, Russo A, Galbiatti ALS, Almeida WP, Bertollo EMG. Glutathione: Biosynthesis and Mechanism of Action; p. 1-34.
Zenkov NK, Kolpakov AR, Menshchikova EB. Redoks-chuvstvitelnaja sistema Keap1/Nrf2/are kak farmakologicheskaja mishen pri serdechno-sosudistoj patologii [Keap1/Nrf2/are Redox-sensitive system as a phagmacological target in cardiovascular diseases]. Sibirskij nauchnyj medicinskij zhurnal [Siberian Scientific Medical Journal]. 2015;35(5):5-25. (Russian).
Bachhawat AK, Yadav S. The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life. 2018;70(7):585-592. https://doi.org/10.1002/iub.1756
Rushworth GF, Megson IL. Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014;141(2):150-9. https://doi.org/10.1016/j.pharmthera.2013.09.006
Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830(8):4117-4129. https://doi.org/10.1016/j.bbagen.2013.04.016
Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7(4):355-359. https://doi.org/10.1016/j.coph.2007.04.005
Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489-92. https://doi.org/10.1093/jn/134.3.489
Cacciatore I, Cornacchia C, Pinnen F, Mollica A, Di Stefano A. Prodrug approach for increasing cellular glutathione levels. Molecules. 2010;15(3):1242-1264. https://doi.org/10.3390/molecules15031242
Raghu G, Berk M, Campochiaro PA, Jaeschke H, Marenzi G, Richeldi L, Wen FQ, Nicoletti F, Calverley PMA. The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disorders Characterized by Oxidative Stress. Curr Neuropharmacol. 2021;19(8):1202-1224. https://doi.org/10.2174/1570159X19666201230144109
Tenório MCDS, Graciliano NG, Moura FA, Oliveira ACM, Goulart MOF. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants (Basel). 2021;10(6):967. https://doi.org/10.3390/antiox10060967
Zhou J, Coles LD, Kartha RV, Nash N, Mishra U, Lund TC, Cloyd JC. Intravenous Administration of Stable-Labeled N-Acetylcysteine Demonstrates an Indirect Mechanism for Boosting Glutathione and Improving Redox Status. J Pharm Sci. 2015;104(8):2619-26. https://doi.org/10.1002/jps.24482
Radtke KK, Coles LD, Mishra U, Orchard PJ, Holmay M, Cloyd JC. Interaction of N-acetylcysteine and cysteine in human plasma. J Pharm Sci. 2012;101(12):4653-4659. https://doi.org/10.1002/jps.23325
Shi Z, Puyo CA. N-Acetylcysteine to Combat COVID-19: An Evidence Review. Ther Clin Risk Manag. 2020;16:1047-1055. https://doi.org/10.2147/TCRM.S273700
Mashkovskij MD. Lekarstvennye sredstva. 16th ed. Moskva: Novaja volna; 2020. 1216 p. (Russian).
Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, Sergio F. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;52(7):751-762. https://doi.org/10.1080/10715762.2018.1468564
Akca T, Canbaz H, Tataroglu C, Caglikulekci M, Tamer L, Colak T, Kanik A, Bilgin O, Aydin S. The effect of N-acetylcysteine on pulmonary lipid peroxidation and tissue damage. J Surg Res. 2005;129(1):38-45. https://doi.org/10.1016/j.jss.2005.05.026
Szeto HH. Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J. 2006;8(3):E521-31. https://doi.org/10.1208/aapsj080362.
Jiao Y, Ma S, Wang Y, Li J, Shan L, Liu Q, Liu Y, Song Q, Yu F, Yu H, Liu H, Huang L, Chen J. N-Acetyl Cysteine Depletes Reactive Oxygen Species and Prevents Dental Monomer-Induced Intrinsic Mitochondrial Apoptosis In Vitro in Human Dental Pulp Cells. PLoS One. 2016;11(1):e0147858. https://doi.org/10.1371/journal.pone.0147858
Go YM, Chandler JD, Jones DP. The cysteine proteome. Free Radic Biol Med. 2015;84:227-245. https://doi.org/10.1016/j.freeradbiomed.2015.03.022
Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans. 2015;43(4):621-626. https://doi.org/10.1042/BST20150014
Fratta Pasini AM, Stranieri C, Cominacini L, Mozzini C. Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants (Basel). 2021;10(2):272. https://doi.org/10.3390/antiox10020272
Zhou Y, Wang HD, Zhou XM, Fang J, Zhu L, Ding K. N-acetylcysteine amide provides neuroprotection via Nrf2-ARE pathway in a mouse model of traumatic brain injury. Drug Des Devel Ther. 2018;12:4117-4127. https://doi.org/10.2147/DDDT.S179227
Ibrahim H, Perl A, Smith D, Lewis T, Kon Z, Goldenberg R, Yarta K, Staniloae C, Williams M. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol. 2020;219:108544. https://doi.org/10.1016/j.clim.2020.108544
Pei Y, Liu H, Yang Y, Yang Y, Jiao Y, Tay FR, Chen J. Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects. Oxid Med Cell Longev. 2018;2018:2835787. https://doi.org/10.1155/2018/2835787
Uraz S, Tahan G, Aytekin H, Tahan V. N-acetylcysteine expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic acid-induced colitis in rats. Scand J Clin Lab Invest. 2013;73(1):61-66. https://doi.org/10.3109/00365513.2012.734859
Saddadi F, Alatab S, Pasha F, Ganji MR, Soleimanian T. The effect of treatment with N-acetylcysteine on the serum levels of C-reactive protein and interleukin-6 in patients on hemodialysis. Saudi J Kidney Dis Transpl. 2014;25(1):66-72. https://doi.org/10.4103/1319-2442.124489
AlMatar M, Batool T, Makky EA. Therapeutic Potential of N-Acetylcysteine for Wound Healing, Acute Bronchiolitis, and Congenital Heart Defects. Curr Drug Metab. 2016;17(2):156-167. https://doi.org/10.2174/1389200217666151210124713
Kasperczyk S, Dobrakowski M, Kasperczyk A, Romuk E, Rykaczewska-Czerwińska M, Pawlas N, Birkner E. Effect of N-acetylcysteine administration on homocysteine level, oxidative damage to proteins, and levels of iron (Fe) and Fe-related proteins in lead-exposed workers. Toxicol Ind Health. 2016;32(9):1607-1618. https://doi.org/10.1177/0748233715571152
Schwalfenberg GK. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J Nutr Metab. 2021;2021:9949453. https://doi.org/10.1155/2021/9949453
Grosicka-Maciąg E, Kurpios-Piec D, Szumiło M, Grzela T, Rahden-Staroń I. Protective effect of N-acetyl-Lcysteine against maneb induced oxidative and apoptotic injury in Chinese hamster V79 cells. Food Chem Toxicol. 2011;49(4):1020-1025. https://doi.org/10.1016/j.fct.2011.01.009
Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol Lett. 2020;225:31-32. https://doi.org/10.1016/j.imlet.2020.06.013
Kanai T, Kondo N, Okada M, Sano H, Okumura G, Kijima Y, Ogose A, Kawashima H, Endo N. The JNK pathway represents a novel target in the treatment of rheumatoid arthritis through the suppression of MMP-3. J Orthop Surg Res. 2020;15(1):87. https://doi.org/10.1186/s13018-020-01595-9
Poppe M, Wittig S, Jurida L, Bartkuhn M, Wilhelm J, Müller H, Beuerlein K, Karl N, Bhuju S, Ziebuhr J, Schmitz ML, Kracht M. The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog. 2017;13(3):e1006286. https://doi.org/10.1371/journal.ppat.1006286
Decramer M, Rutten-van Mölken M, Dekhuijzen PN, Troosters T, van Herwaarden C, Pellegrino R, van Schayck CP, Olivieri D, Del Donno M, De Backer W, Lankhorst I, Ardia A. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomized placebo-controlled trial. Lancet. 2005;365(9470):1552-1560. https://doi.org/10.1016/S0140-6736(05)66456-2
Dauletbaev N, Fischer P, Aulbach B, Gross J, Kusche W, Thyroff-Friesinger U, Wagner TO, Bargon J. A phase II study on safety and efficacy of high-dose N-acetylcysteine in patients with cystic fibrosis. Eur J Med Res. 2009;14(8):352-358. https://doi.org/10.1186/2047-783X-14-8-352
Nascimento MM, Suliman ME, Silva M, Chinaglia T, Marchioro J, Hayashi SY, Riella MC, Lindholm B, Anderstam B. Effect of oral N-acetylcysteine treatment on plasma inflammatory and oxidative stress markers in peritoneal dialysis patients: a placebo-controlled study. Perit Dial Int. 2010;30(3):336-42. https://doi.org/10.3747/pdi.2009.00073
Shherba AE. Prognozirovanie i kompleksnoe lechenie posleoperacionnoj disfunkcii transplantatov pecheni [masters thesis]. Minsk (Belarus); 2018. 48 р. (Russian).
Dean O, Giorlando F, Berk M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci. 2011;36(2):78-86. https://doi.org/10.1503/jpn.100057
Kolesnikov AV, Shishkin MM, Uzbekov MG, Shchulkin AV, Barenina OI. Vlijanie acetilcisteina na vyrazhennost kornealnogo okislitelnogo stressa pri jeksperimentalnoj gnojnoj jazve rogovicy [Effect of acetylcystein on the intensity of corneal oxidative stress caused by experimental purulent corneal ulcer]. Vestnik Nacionalnogo mediko-hirurgicheskogo Centra im. N. I. Pirogova [Bulletin of Pirogov National Medical & Surgical Center] 2014;9(3):103-107. (Russian).
Neroev VV, Davydova GA, Perova TS. Modelirovanie immunogennogo uveita u krolikov. Bjulleten jeksperimentalnoj biologii i mediciny [Bulletin of Experimental Biology and Medicine]. 2006;142(11):598-600. https://doi.org/10.1007/s10517-006-0428-1 (Russian).
Marmysh VG. Sostojanie processov perekisnogo okislenija lipidov i aktivnosti antioksidantnoj sistemy v tkanjah perednego segmenta glaza u krolikov s jeksperimentalnym immunogennym uveitom pri parenteralnom vvedenii acetilcisteina In: Krotkova EN, executive editors. Aktualnye problemy mediciny. Materialy itogovoj nauchno-prakticheskoj konferencii; 2021 Jan. 28-29; Grodno. Grodno: GrSMU; 2021. p. 536-542. (Russian).