ЛЕЧЕНИЕ НЕДЕРЖАНИЯ МОЧИ ПРИ НАПРЯЖЕНИИ У ЖЕНЩИН СТВОЛОВЫМИ КЛЕТКАМИ



DOI: http://dx.doi.org/10.25298/2221-8785-2020-18-4-358-364


А. Н. Нечипоренко

Аннотация


В западных странах примерно 15% всех женщин страдают недержанием мочи при напряжении. Заболеваемость значительно выше среди пожилых – более 25% пожилых женщин страдают этим заболеванием. Если такие методы лечения, как физические упражнения, лекарственные препараты или электростимуляция сфинктера, не восстанавливают удержание мочи, может быть применена клеточная терапия для улучшения функции сфинктера уретры.

Развитие недержания мочи при напряжении у женщин связывают с нарушением структуры сфинктера уретры, обеспечивающего герметичность мочевого пузыря. Нарушение структуры сфинктера проявляется потерей мышечных клеток и замещением их соединительной тканью.

В предлагаемом читателям обзоре кратко суммированы современные знания о стволовых клетках, применяемых для терапии недержания мочи: мезенхимальных стромальных клетках, стволовых клетках, полученных из мочи и мышечных сателлитных клетках; о совершенствовании методов хирургической навигации; инъекций клеток в мышцу сфинктера и перспективы, полученные из недавних доклинических исследований.


Ключевые слова


мезенхимальные стволовые клетки; недержание мочи при напряжении; применение стволовых клеток; методы инъекции клеток

Полный текст:

Литература


High costs of urinary incontinence among women electing surgery to treat stress incontinence / L. L. Subak [et al.] // Obstetrics & Gynecology. – 2008. – Vol. 111 (4). – P. 899907. – doi: 10.1097/AOG.0b013e31816a1e12.

Prevalence of urinary incontinence in men: Results from the national health and nutrition examination survey / A. D. Markland [et al.] // Journal of Urology. – 2010. – Vol. 184 (3). – P. 1022-1027. doi: 10.1016/j.juro.2010.05.025.

Delancey, J. O. L. Why do women have stress urinary incontinence? / J. O. L. Delancey // Neurourology & Urodynamics. – 2010. – Vol. 29, suppl. 1. – P. S13-S17. – doi: 10.1002/nau.20888.

Chermansky, C. J. Complications of vaginal mesh surgery / C. J. Chermansky, J. C. Winters // Current Opinion in Urology. – 2012. – Vol. 22 (4). – 287-291. – doi: 10.1097/ MOU.0b013e32835480b2.

Kerr, L. A. Bulking agents in the treatment of stress urinary incontinence: History, outcomes, patient populations, and reimbursement profile / L. A. Kerr // Reviews Urology. – 2005. – Vol. 7, suppl. 1. – P. S3-S11.

Stem cell therapy for incontinence: Where are we now? What is the realistic potential? / C. Dissaranan [et al.] // Current Urology Reports. – 2011. – Vol. 12 (5). – P. 336344. – doi: 10.1007/s11934-011-0210-4.Staack, A. Stem cells for the treatment of urinary incontinence / A. Staack, L. V. Rodriguez // Current Urology Reports. – 2011. – Vol. 12 (1). – P. 41-46. – doi: 10.1007/s11934-010-0155-z.

Wang, H. J. Development of cellular therapy for the treatment of stress urinary incontinence / H. J. Wang, Y. C. Chuang, M. B. Chancellor // International Urogynecology Journal. – 2011. – Vol. 22 (9). – P. 1075-1083. – doi: 10.1007/s00192-011-1432-1.

Treatment of stress urinary incontinence with adipose tissue-derived stem cells / G. Lin [et al.] // Cytotherapy. – 2010. – Vol. 12 (1). – P. 88-95. – doi: 10.3109/14653240903350265.

Goldman, H. B. Will we ever use stem cells for the treatment of SUI? ICI-RS 2011 / H. B. Goldman, K.-D. Sievert, M. S. Damaser // Neurourology & Urodynamics. – 2012. – Vol. 31 (3). – P. 386-389. – doi: 10.1002/nau.22217.

Stem cell therapy in bladder dysfunction: Where are we? And where do we have to go? / J. H. Kim [et al.] // BioMed Research International. – 2013. – Vol. 2013. – Art. ID 930713. – doi: 10.1155/2013/930713.

Autologous myoblasts and fibroblasts versus collagen for treatment of stress urinary incontinence in women: A randomized controlled trial / H. Strasser [et al.] // Lancet. – 2007. – Vol. 369 (9580). – P. 2179-2186. – doi: 10.1016/ S0140-6736(07)61014-9.

Urinary incontinence in the elderly and age-dependent apoptosis of rhabdosphincter cells / H. Strasser [et al.] // Lancet. – 1999. – Vol. 354 (9182). – P. 918-919. – doi: 10.1016/S0140-6736(99)02588-X.

Myoblast and fibroblast therapy for post-prostatectomy urinary incontinence: 1-Year follow up of 63 patients / M. Mitterberger [et al.] // Journal of Urology. – 2008. – Vol. 179 (1). – P. 226-231. – doi: 10.1016/j. juro.2007.08.154.

Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: Report of two initial cases / T. Yamamoto [et al.] // International Journal of Urology. – 2010. – Vol. 17 (1). – P. 75-82. – doi: 10.1111/j.1442-2042.2009.02429.x.

Muscle-derived cells for treatment of iatrogenic sphincter damage and urinary incontinence in men / H. Gerullis [et al.] // Scientific World Journal. – 2012. – Vol. 2012. – Art. ID 898535. – doi: 10.1100/2012/898535.

Stem Cells Treatment for the Local Feminine Stress Urinary Incontinence Treatment (HULPURO) [Electronic resource] // ClinicalTrials.gov / U.S. National Library of Medicine. – Mode of access: https://clinicaltrials.gov/ct2/ show/NCT01300598. – Date of access: 01.05.2020.

Friedenstein, A. J. Fibroblast precursors in normal and irradiated mouse hematopoietic organs / A. J. Friedenstein, J. F. Gorskaja, N. N. Kulagina // Experimental Hematology. – 1976. – Vol. 4 (5). – P. 267-274.

Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo / B. A. Ashton [et al.] // Clinical Orthopaedics & Related Research. – 1980. – Vol. 151. – P. 294-307.

Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo / I. Bab [et al.] // Journal of Cell Science. – 1986. – Vol. 84. – P. 139-151.

Friedenstein, A. J. Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers / A. J. Friedenstein, C. A. Chailakhyan, U. V. Gerasimov // Cell Tissue Kinet. – 1987. – Vol. 20 (3). – P. 263-272. – doi: 10.1111/j.1365-2184.1987.tb01309.x.

Caplan, A. I. Mesenchymal stem cells / A. I. Caplan // Journal of Orthopaedic Research. – 1991. – Vol. 9 (5). – P. 641-650. – https://doi.org/10.1002/sctm.17-0051.

Multilineage potential of adult human mesenchymal stem cells / M. F. Pittenger [et al.] // Science. – 1999. – Vol. 284 (5411). – P. 143-147. – doi: 10.1126/science.284.5411.143.

Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo / A. C. W. Zannettino [et al.] // Journal of Cellular Physiology. – 2008. – Vol. 214 (2). – P. 413-421. – doi: 10.1002/ jcp.21210.

Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts / D. T. Covas [et al.] // Experimental Hematology. – 2008. – Vol. 36 (5). – P. 642-654. – doi: 10.1016/j.exphem.2007.12.015.

A perivascular origin for mesenchymal stem cells in multiple human organs / M. Crisan [et al.] // Cell Stem Cell. – 2008. – Vol. 3 (3). – P. 301-313. – doi: 10.1016/j. stem.2008.07.003.

Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graftversus-host disease in mice / M. Sudres [et al.] // Journal of Immunology. – 2006. – Vol. 176 (12). – P. 7761-7767. – doi: 10.4049/jimmunol.176.12.7761.

Placenta-derived mesenchymal stem cells have an immunomodulatory effect that can control acute graftversus-host disease in mice / M. J. Jang [et al.] // Acta Haematologica. – 2013. – Vol. 129 (4). – P. 197-206. – doi: 10.1159/000345267.

Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing / L. Chen [et al.] // PLoS One. – 2008. – Vol. 3 (4). – P. e1886. – doi: 10.1371/journal.pone.0001886.

Adipose tissue derived stem cells secretome: Soluble factors and their roles in regenerative medicine / A. J. Salgado [et al.] // Current Stem Cell Research & Therapy. – 2010. – Vol. 5 (2). – P. 103-110. – doi: 10.2174/157488810791268564.

Minguell, J. J. Mesenchymal stem cells and the treatment of cardiac disease / J. J. Minguell, A. Erices // Experimental Biology & Medicine. – 2006. – Vol. 231 (1). – P. 39-49.

Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head / L. Rackwitz [et al.] // Stem Cell Research & Therapy. – 2012. – Vol. 22, № 3. – P. 7. – doi: 10.1186/scrt98.

A stem cell-based approach to cartilage repair / K. Johnson [et al.] // Science. – 2012. – Vol. 336 (6082). – P. 717–721. – doi: 10.1126/science.1215157.

Mesenchymal stem cell transplantation for the infarcted heart: A role in minimizing abnormalities in cardiacspecific energy metabolism / C. C. Hughey [et al.] // American Journal of Physiology-Endocrinology & Metabolism. – 2012. – Vol. 302 (2). – P. E163-172. – doi: 10.1152/ajpendo.00443.2011.

Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord / W. Gu [et al.] // Neuropathology. – 2010. – Vol. 30 (3). – P. 205-217. – doi: 10.1111/j.14401789.2009.01063.x.

Induction regenerating urinary bladder smooth muscle cells / A. Kanematsu [et al.] // American Journal of Pathology. – 2005. – Vol. 166 (2). – P. 565-573. – doi: 10.1016/S0002-9440(10)62278-X.

In vitro myogenic differentiation of human bone marrowderived mesenchymal stem cells as a potential treatment for urethral sphincter muscle repair / A. C. Drost [et al.] // Annals of the New York Academy of Sciences. – 2009. – Vol. 1176. – P. 135-143. – doi: 10.1111/j.17496632.2009.04610.x.

Autologous bone-marrow-derived mesenchymal stem cell transplantation into injured rat urethral sphincter / Y. Kinebuchi [et al.] // International Journal of Urology. – 2010. – Vol. 17 (4). – P. 359-368. – doi: 10.1111/j.14422042.2010.02471.x.

Self-renewal and differentiation capacity of urine-derived stem cells after urine preservation for 24 hours / R. Lang [et al.] // PLoS One. – 2013. – Vol. 8 (1). – P. e53980. – https://doi.org/10.1371/journal.pone.0053980.

Skeletal myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth factors / G. Liu [et al.] // Biomaterials. – 2013. – Vol. 34 (4). – P. 1311-1326. – doi: 10.1016/j. biomaterials.2012.10.038.

Animal serum-free expansion and differentiation of human mesenchymal stromal cells / T. Felka [et al.] // Cytotherapy. – 2010. – Vol. 12 (2). – P. 143-153. – doi: 10.3109/14653240903470647.

Implantation of autologous urine derived stem cells expressing vascular endothelial growth factor for potential use in genitourinary reconstruction / S. Wu [et al.] // Journal of Urology. – 2011. – Vol. 186 (2). – P. 640-647. – doi: 10.1016/j.juro.2011.03.152.

Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral Tissue Engineering / S. Wu [et al.] // Biomaterials. – 2011. – Vol. 32 (5). – P. 1317-1326. – doi: 10.1016/j. biomaterials.2010.10.006.

Phinney, D. G. Concise review: Mesenchymal stem/ multipotent stromal cells: The state of trans differentiation and modes of tissue repair – Current views / D. G. Phinney, D. J. Prockop // Stem Cells. – 2007. – Vol. 25 (11). – P. 2896-2902. – doi: 10.1634/stemcells.2007-0637.

The anatomical components of urinary continence / C. Wallner [et al.] // European Urology. – 2009. – Vol. 55 (4). – P. 932-943. – doi: 10.1016/j.eururo.2008.08.032.

Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood / E. J. Gang [et al.] // Stem Cells. – 2004. – Vol. 22 (4). – P. 617624. – doi: 10.1634/stemcells.22-4-617.

Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA / L. Warren [et al.] // Cell Stem Cell. 2010. – Vol. 7 (5). – P. 618-630. – doi: 10.1016/j.stem.2010.08.012.

Wagers, A. J. Cellular and molecular signatures of muscle regeneration: Current concepts and controversies in adult myogenesis / A. J. Wagers, I. M. Conboy // Cell. 2005. – Vol 122 (5). – P. 659-667. – doi: 10.1016/j.cell.2005.08.021.

Neurologic recovery and improved detrusor contractility using muscle-derived cells in rat model of unilateral pelvic nerve transection / D. Kwon [et al.] // Urology. 2005. – Vol. 65 (6). – P. 1249-1253. – doi: 10.1016/j.urology.2005.01.037.

Safety, efficacy and health related quality of life of autologous myoblast transplantation for treatment of urinary incontinence in children with bladder exstrophyepispadias complex / A. Elmi [et al.] // Journal of Urology. 2011. – Vol. 186 (5). – P. 2021-2026. – doi: 10.1016/j.juro.2011.07.029.

Dose-response relationship of mesenchymal stem cell transplantation and functional regeneration after severe skeletal muscle injury in rats / T. Winkler [et al.] // Tissue Engineering. – 2009. – Vol. 15 (3). – P. 487-492. – doi: 10.1089/ten.tea.2007.0426.

Muscle precursor cells for the restoration of irreversibly damaged sphincter function / D. Eberli [et al.] // Cell Transplantation. – 2012. – Vol. 21 (9). – P. 2089-2098. – doi: 10.3727/096368911X623835.

Jiang, H.-H. Animal models of stress urinary incontinence / H.-H. Jiang, M. S. Damaser // Handbook of Experimental Pharmacology. – 2011. – Vol. 202. – P. 45-67. – doi: 10.1007/978-3-642-16499-6_3.


Ссылки

  • На текущий момент ссылки отсутствуют.