МЕХАНИЗМЫ ДЕЙСТВИЯ И ШИРОТА ПРИМЕНЕНИЯ ГИАЛУРОНОВОЙ КИСЛОТЫ

  • О. А. Квятковская Гродненский государственный медицинский университет, Гродно, Беларусь https://orcid.org/0000-0002-8973-6879
  • А. В. Людчик ООО «ГиалСин Технолоджи», Минск, Беларусь
  • Н. С. Сердюченко Национальная академия наук Беларуси, Минск, Беларусь
  • В. С. Аносов Республиканский научно-практический центр травматологии и ортопедии, Минск, Беларусь https://orcid.org/0000-0002-7835-3231
  • А. Ю. Коваленко Минская областная клиническая больница, Минск, Беларусь
Ключевые слова: гиалуроновая кислота, гиалуронан, клеточный рецептор, механизм действия

Аннотация

Учитывая тот факт, что на сегодняшний день эффекты применения гиалуроновой кислоты сужают лишь до внутрисуставных инъекций или косметологического средства, цель данной статьи – выполнение анализа современной литературы, посвященной вопросам механизма действия гиалуроновой кислоты на организм на разных уровнях (молекулярном, клеточном и тканевом), для расширения кругозора и демонстрации возможностей применения гиалуроновой кислоты в научной и практической медицинской деятельности.

Литература

Zhu J, Tang X, Jia Y, Ho CT, Huang Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery : A review. Int J Pharm. 2020;578:119127. https://doi.org/10.1016/j.ijpharm.2020.119127.

Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic Acid: Molecular Mechanisms and Therapeutic Trajectory. Front Vet Sci. 2019;6:192. https://doi.org/10.3389/fvets.2019.00192.

Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999;7(2):79-89. https://doi.org/10.1046/j.1524-475x.1999.00079.

Fraser JR, Laurent JR, Laurent TC. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med. 1997;242(1):27-33. https://doi.org/10.1046/j.1365-2796.1997.00170.

Stern R. Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol. 2004;83(7):317-325. https://doi.org/10.1078/0171-9335-00392.

McCourt PA. How does the hyaluronan scrap-yard operate? Matrix Biol. 1999;18(5):427-432. https://doi.org/10.1016/S0945-053X(99)00045-1.

Juhlin L. Hyaluronan in skin. J Intern Med. 1997;242(1):61-66. https://doi.org/10.1046/j.1365-2796.1997.00175.

Liu L, Liu Y, Li J, Du G, Chen J. Microbial production of hyaluronic acid: current state, challenges and perspectives. Microb. Cell Fact. 2011;10:99. https://doi.org/10.1186/1475-2859-10-99.

Conrozier T, Chevalier X. Long-term experience with hylan GF-20 in the treatment of knee osteoarthritis. Expert Opin Pharmacother. 2008;9(10):1797-1804. https://doi.org/10.1517/14656566.9.10.1797.

Strom A, Larsson A, Okay O. Preparation and physical properties of hyaluronic acid-based cryogels. J Appl Polym Sci. 2015;132(29). https://doi.org/10.1002/app.42194.

Csoka AB, Stern R. Hypotheses on the evaluation of hyaluronan: A highly ironic acid. Glycobiology. 2013;23(4):398-411. https://doi.org/10.1093/glycob/cws218.

Savani RC, Cao G, Zamabn A, Pooler PM, Zhou Z, DeLisser HM. Differential involvement of the hyaluronan(HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem. 2001;276(39):36770-36778. https://doi.org/10.1074/jbc.M102273200.

Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev. 2016;97:186-203. https://doi.org/10.1016/j.addr.2015.10.017.

Fallacara A, Baldind Е, Manfredini S, Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers. 2018;10(7):701. https://doi.org/10.3390/polym10070701.

Isacke CM, Yarwood H. The hyaluronan receptor, CD44. Int J Biochem Cell Biol. 2002;34(7):718-721. https://doi.org/10.1016/s1357-2725(01)00166-2.

Xing F, Zhou C, Hui D, Du C, Wu L, Wang L, Wang W, Pu X, Gu L, Liu L, Xiang Z, Zhang X. Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification, properties, and biological functions Nanotechnol Rev. 2020;9(1):1059-1079. https://doi.org/10.1515/ntrev-2020-0084.

Dovedytis M, Liu ZJ, Bartlett S. Hyaluronic acid and its biomedical applications: A review. Eng Regen. 2020;1:102-113. https://doi.org/10.1016/j.engreg.2020.10.001.

Quéré R, Andradottir S, Brun ACM, Zubarev RA, Karlsson G, Olsson K, Magnusson M, Cammenga J, Karlsson S. High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event. Leukemia. 2011;25(3):515-526. https://doi.org/10.1038/leu.2010.281.

Leng Y, Abdullah A, Wendt MK, Calve S. Hyaluronic acid, CD44 and RHAMM regulate myoblast behavior during embryogenesis. Matrix Biology. 2019;78-79:236-254. https://doi.org/10.1016/j.matbio.2018.08.008.

Song JM, Im J, Nho RS, Han YH, Upadhyaya P, Kassie F. Hyaluronan-CD44/RHAMM interaction-dependent cell proliferation and survival in lung cancer cells. Mol Carcinog. 2019;58(3):321-333. https://doi.org/10.1002/mc.22930.

Gariboldi S, Palazzo М, Zanobbio L, Selleri S, Sommariva M, Sfondrini L, Cavicchini S, Balsari A, Rumio C. Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of β-Defensin 2 via TLR2 and TLR4. J Immunol. 2008;181(3):2103-2110. https://doi.org/10.4049/jimmunol.181.3.2103.

Leppilahti M, Hellström P, Tammela TLJ. Effect of diagnostic hydrodistension and four intravesical hyaluronic acid instillations on bladder ICAM-1 intensity and association of ICAM-1 intensity with clinical response in patients with interstitial cystitis. Urology. 2002;60(1):46-51. https://doi.org/10.1016/S0090-4295(02)01613-8.

Drago L, Cappelletti L, De Vecchi E, Pignataro L, Torretta S, Mattina R. Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections. APMIS. 2014;122(10):1013-1019. https://doi.org/10.1111/apm.12254.

Walker K, Basehore BM, Goyal A, Zito PM. Hyaluronic Acid. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482440/.

Altman RD, Manjoo А, Fierlinger А, Niazi F, Nicholls M. The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review. BMC Musculoskelet Disord. 2015;16:321. https://doi.org/10.1186/s12891-015-0775-z.

Elmorsy S, Funakoshi Т, Sasazawa F, Todoh M, Tadano S, Iwasaki N. Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model. Osteoarthritis Cartilage. 2014;22(1):121-127. https://doi.org/10.1016/j.joca.2013.10.005.

Diaz-Gallego L, Prieto JG, Coronel Р, Gamazo LE, Gimeno M, Alvarez AI. Apoptosis and nitric oxide in an experimental model of osteoarthritis in rabbit after hyaluronic acid treatment. J Orthop Res. 2005;23(6):1370-1376. https://doi.org/10.1016/j.orthres.2005.05.003.1100230619.

Ando A, Hagiwara Y, Chimoto E, Hatori K, Onoda Y, Itoi E. Intra-articular injection of hyaluronan diminishes loss of chondrocytes in a rat immobilized-knee model. Tohoku J Exp Med. 2008;215(4):321-331. https://doi.org/10.1620/tjem.215.321.

Brun P, Panfilo S, Daga Gordini D, Cortivo R, Abatangelo G. The effect of hyaluronan on CD44-mediated survival of normal and hydroxyl radical-damaged chondrocytes. Osteoarthritis Cartilage. 2003;11(3):208-216. https://doi.org/10.1016/S1063-4584(02)00352-7.

Brun P, Zavan В, Vindigni V, Schiavinato А, Pozzuoli А, Iacobellis С. In vitro response of osteoarthritic chondrocytes and fibroblast-like synoviocytes to a 500-730 kDa hyaluronan amide derivative. J Biomed Mater Res B Appl Biomater. 2012;100(8):2073-2081. https://doi.org/10.1002/jbm.b.32771.

Julovi SM, Yasuda Т, Shimizu М, Hiramitsu Т, Nakamura Т. Inhibition of interleukin-1beta-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum. 2004;50(2):516-525. https://doi.org/10.1002/art.20004.

Karna E, Miltyk W, Surazynski A, Palka JA. Protective effect of hyaluronic acid on interleukin-1-induced deregulation of beta1-integrin and insulin-like growth factor-I receptor signaling and collagen biosynthesis in cultured human chondrocytes. Mol Cell Biochem. 2008;308(1-2):57-64. https://doi.org/10.1007/s11010-007-9612-5.

Waddell DD, Kolomytkin OV, Dunn S, Marino АА. Hyaluronan suppresses IL-1beta-induced metalloproteinase activity from synovial tissue. Clin Orthop Relat Res. 2007;465:241-248. https://doi.org/10.1097/BLO.0b013e31815873f9.

Kalaci A, Yilmaz HR, Aslan B, Söğüt S, Yanat AN, Uz E. Effects of hyaluronan on nitric oxide levels and superoxide dismutase activities in synovial fluid in knee osteoarthritis. Clin Rheumatol. 2007;26(8):1306-1311. https://doi.org/10.1007/s10067-006-0504-y.

Peng H, Zhou JL, Liu SQ, Hu QJ, Ming JH, Qiu B. Hyaluronic acid inhibits nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes in vitro. Inflamm Res. 2010;59(7):519-530. https://doi.org/10.1007/s00011-010-0156-x.

Maneiro E, de Andres MC, Fernandez-Sueiro JL, Galdo F, Blanco FJ. The biological action of hyaluronan on human osteoartritic articular chondrocytes: the importance of molecular weight. Clin Exp Rheumatol. 2004;22(3):307-312.

Galois L, Etienne S, Henrionnet C, Scala-Bertola J, Grossin L, Mainard D, Gillet P, Pinzano A. Ambivalent properties of hyaluronate and hylan during post-traumatic OA in the rat knee. Biomed Mater Eng. 2012;22(4):235-242. https://doi.org/10.3233/BME-2012-0713.

Yatabe T, Mochizuki S, Takizawa M, Chijiiwa M, Okada A, Kimura T, Fujita Y, Matsumoto H, Toyama Y, Okada Y. Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondrocytes. Ann Rheum Dis. 2009;68(6):1051-1058. https://doi.org/10.1136/ard.2007.086884.

Greenberg DD, Stoker A, Kane S, Cockrell M, Cook JL. Biochemical effects of two different hyaluronic acid products in a co-culture model of osteoarthritis. Osteoarthritis Cartilage. 2006;14(8):814-822. https://doi.org/10.1016/j.joca.2006.02.006.

Lajeunesse D, Delalandre А, Martel-Pelletier J, Pelletier JP. Hyaluronic acid reverses the abnormal synthetic activity of human osteoarthritic subchondral bone osteoblasts. Bone. 2003;33(4):703-710. https://doi.org/10.1016/S8756-3282(03)00206-0.

Sasaki A, Sasaki K, Konttinen YT, Santavirta S, Takahara M, Takei H, Ogino T, Takagi M. Hyaluronate inhibits the interleukin-1beta-induced expression of matrix metalloproteinase(MMP)-1 and MMP-3 in human synovial cells. Tohoku J Exp Med. 2004;204(2):99-107. https://doi.org/10.1620/tjem.204.99.

Chang CC, Hsieh MS, Liao ST, Chen YH, Cheng CW, Huang PT, Lin YF, Chen CH. Hyaluronan regulates PPARγ and inflammatory responses in IL-1β-stimulated human chondrosarcoma cells, a model for osteoarthritis. Carbohydr Polym. 2012;90(2):1168-1175. https://doi.org/10.1016/j.carbpol.2012.06.071.

Lu HT, Sheu MT, Lin YF, Lan J, Chin YP, Hsieh MS, Cheng CW, Chen CH. Injectable hyaluronic-acid-doxycycline hydrogel therapy in experimental rabbit osteoarthritis. BMC Vet Res. 2013;9:68. https://doi.org/10.1186/1746-6148-9-68.

Forsey RW, Fisher J, Thompson J, Stone MH, Bell C, Ingham E. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials. 2006;27(26):4581-4590. https://doi.org/10.1016/j.biomaterials.2006.04.018.

Ding M, Christian Danielsen C, Hvid I. Effects of hyaluronan on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Bone. 2005;36(3):489-501. https://doi.org/10.1016/j.bone.2004.12.010.

Ishijima M, Nakamura T, Shimizu K, Hayashi K, Kikuchi H, Soen S, Omori G, Yamashita T, Uchio Y, Chiba J, IdenoY, Kurosawa H, Kaneko K. Different changes in the biomarker CTX-II following intra-articular injection of high molecular weight hyaluronic acid and oral non-steroidal anti-inflammatory drugs for patients with knee osteoarthritis: a multi-center randomized controlled study. Osteoarthritis Cartilage. 2013;21(Suppl):S292. https://doi.org/10.1016/j.joca.2013.02.612.

Hiraoka N, Takahashi Y, Arai K, Honjo S, Nakawaga S, Tsuchida S, Sakao K, Kubo T. 164 Hyaluronan and intermittent hydrostatic pressure synergistically suppressed MMP-13 and Il-6 expressions in osteoblasts from OA subchondral bone. Osteoarthritis Cartilage. 2009;17(1):S97. https://doi.org/10.1016/S1063-4584(09)60186-2.

Dougados M. Sodium hyaluronate therapy in osteoarthritis: arguments for a potential beneficial structural effect. Semin Arthritis Rheum. 2000;30(2 Suppl 1):19-25. https://doi.org/10.1053/sarh.2000.0246.

Gialsin [Internet]. Available from: https://gial.by (Russian).




Загрузок PDF: 118
Опубликован
2024-07-10
Как цитировать
1.
Квятковская ОА, Людчик АВ, Сердюченко НС, Аносов ВС, Коваленко АЮ. МЕХАНИЗМЫ ДЕЙСТВИЯ И ШИРОТА ПРИМЕНЕНИЯ ГИАЛУРОНОВОЙ КИСЛОТЫ. Журнал ГрГМУ (Journal GrSMU) [Интернет]. 10 июль 2024 г. [цитируется по 21 ноябрь 2024 г.];22(3):203-10. доступно на: http://journal-grsmu.by/index.php/ojs/article/view/3157