РОЛЬ ТРАНСФОРМИРУЮЩЕГО ФАКТОРА РОСТА β1 В ГЕНЕЗЕ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ И ЕЕ ОСЛОЖНЕНИЙ

  • Т. В. Левкович УО "Гродненский государственный медицинский университет", Гродно, Беларусь https://orcid.org/0000-0003-1305-3657
  • Т. П. Пронько УО "Гродненский государственный медицинский университет", Гродно, Беларусь https://orcid.org/0000-0003-2126-5246
Ключевые слова: артериальная гипертензия, артериосклероз, атеросклероз, трансформирующий фактор роста бета 1, фиброз, эндотелин-1, эндотелиально-мезенхимальная трансформация

Аннотация

Трансформирующий фактор роста бета 1 (ТФРβ1) – активно исследуемый цитокин с довольно противоречивыми эффектами. В статье систематизированы и обобщены научные сведения о ТФРβ1 и его участии в развитии и прогрессировании артериальной гипертензии, сделан акцент на жесткость артерий.

Литература

Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. New England Journal of Medicine. 2000;342(18):1350-1358. https://doi.org/10.1056/NEJM200005043421807.

Moskalev AV, Rudoy AS, Apchel AV, Zueva VO, Kazimova O. Osobennosti biologii transformirujushhego rostovogo faktora β i immunopatologija [Features of biology of transforming growth factor β and immunopa- thology]. Vestnik Rossijskoj voenno-medicinskoj akademii [Bulletin of the Russian Military Medical Academy]. 2016;2(54):206-216. (Russian).

Nacif M, Shaker O. Targeting transforming growth factor-β (TGF-β) in cancer and non-neoplastic diseases. Journal of Cancer Therapy. 2014;5(7):735-747. https://doi.org/10.4236/jct.2014.57082.

Dong Y, Zhang HF, Chen H, Yang XJ, Li J, Shu CL, Cheng Y. The cytokine secretion of peripheral blood mononucleocytes from patients infected with HCV. Immunology. 2004;20(3):331-333.

Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ. Origin of cardiac fibroblasts and the role of periostin. Circulation Research. 2009;105(10):934-947. https://doi.org/10.1161/CIRCRESAHA.109.201400.

Wrighton KH, Lin X, Feng X-H. Phospho-control of TGF-β superfamily signaling. Cell Research. 2009;19(1):8-20. https://doi.org/10.1038/cr.2008.327.

Zavadil J, Bitzer M, Liang D, Yang Y-C, Massimi A, Kneitz S, Piek E, Böttinger EP. Genetic programs of epi- thelial cell plasticity directed by transforming growth factor. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(12):6686-6691. https://doi.org/10.1073/pnas.111614398.

Pardali E, Goumans M-J, ten Dijke P. Signaling by members of the TGF-β family in vascular morphogenesis and disease. Trends in Cell and Molecular Biology. 2010;20(9):556-567. https://doi.org/10.1016/j.tcb.2010.06.006.

Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Alba Greco M, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC. Aneurysm syndromes caused by mutations in the TGF-β receptor. New England Journal of Medicine. 2006;355:788-798. https://doi.org/10.1056/NEJMoa055695.

Mizuguchi T, Matsumoto N. Recent progress in genetics of Marfan syndrome and Marfan-associated disorders. Journal of Human Genetics. 2007;52(1):1-12. https://doi.org/10.1007/s10038-006-0078-1.

Badri KR, Yue M, Carretero OA, Aramgam SL, Cao J, Sharkady S, Kim GH, Taylor GA, Byron KL, Schuger L. Blood pressure homeostasis is maintained by a P311-TGFβ axis. Journal of Clinical Investigation. 2013;123(10):4502-4512. https://doi.org/10.1172/jci69884.

Kakoki M, Pochynyuk OM, Hathaway CM, Tomita H, Hagaman JR, Kim HS, Zaika OL, Mamenko M, Kayashima Y, Matsuki K, Hiller S, Li F, Xu L, Grant R, Bertorello AM, Smithies O. Primary aldosteronism and impaired natriuresis in mice underexpressing TGFβ1. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(14):5600-5605. https://doi.org/10.1073/pnas.1305878110.

Nakao E, Adachi H, Enomoto M, Fukami A, Kumagai E, Nakamura S, Nohara Y, Kono S, Sakaue A, Morikawa N, Tsuru T, Fukumoto Y. Elevated plasma transforming growth factor β1 levels predict the development of hypertension in normotensives: The 14-year follow-up study. American Journal of Hypertension. 2017;30(8):808-814. https://doi.org/10.1093/ajh/hpx053.

Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August P. Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(7):3479-3484. https://doi.org/org/10.1073/pnas.97.7.3479.

Lijnen PJ, Petrov VV, Fagard RH. Association between transforming growth factor-β and hypertension. American Journal of Hypertension. 2003;16(7):604-611. https://doi.org/org/10.1097/00004872-200402001-00315.

Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M, Stanford J, Cook RS, Arteaga CL. TGF-β inhibition enhances chemotherapy action against triplenegative breast cancer. Journal of Clinical Investigation. 2013;123(3):1348-1358. https://doi.org/10.1172/jci65416.

Kindaljova OG, Pronko TP, Stepuro TL. Vzaimosvjaz polimorfizma genov jendotelialnoj NO-sintazy (G894T, T786C) i gena jendotelina-1 (G5665T) s jeffektivnostju terapii u pacientov s arterialnoj gipertenziej posle perenesennogo ishemicheskogo infarkta mozga [Interrelation of genes polymorphism of the endothelial NO-synthase (G894T, T786C) and the Endothelin-1 (G5665T) with the efficiency of therapy in patients with arterial hypertension after previous ischemic stroke]. Zhurnal Grodnenskogo gosudarstvennogo medicinskogo universiteta [Journal of the Grodno State Medical University]. 2018;16(6):271-279. https://doi.org/10.25298/2221-8785-2018-16-6-721-729. (Russian).

Castañares C, Redondo-Horcajo M, Magan-Marchal N, ten Dijke P, Lamas S, Rodríguez-Pascual F. Signaling by ALK5 mediates TGF-induced ET-1 expression in endothelial cells: a role for migration and proliferation. Journal of Cell Science. 2007;120(7):1256-1266. https://doi.org/10.1242/jcs.03419.

Bocharova KA, Goryanov II, Knyazeva LA. Vzaimosvjaz soderzhanija jendotelina-1, transformirujushhego faktora rosta β1 s processami remodelirovanija serdca u bolnyh arterialnoj gipertenziej [The correlation between concentration of endothelin-1 and transforming growth factor-pi with processes of remodelation heart in patients with arterial hypertension]. Vestnik novyh medicinskih tehnologij [Journal of New Medical Technologies]. 2007;14(1):86-87. (Russian).

Wermuth PJ, Li Z, Mendoza FA, Jimenez SA. Stimulation of transforming growth factor-β1-induced endothelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (ET-1): a novel profibrotic effect of ET-1. PLoS One. 2016;11(9):e0161988. https://doi.org/10.1371/journal.pone.0161988.

Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH. Endothelial to mesenchymal transition in cardiovascular disease. Journal of the American College of Cardiology. 2019;73(2):190-209. https://doi.org/10.1016/j.jacc.2018.09.089.

Chua CC, Diglio CA, Siu BB, Chua BH. Angiotensin II induces TGF-beta 1 production in rat heart endothelial cells. Biochimica et Biophysica Acta. 1994;1223(1):141-147. https://doi.org/10.1016/0167-4889(94)90083-3.

Ford CM, Li S, Pickering JG. Angiotensin II stimulates collagen synthesis in human vascular smooth muscle cells. Involvement of the AT1 receptor, transforming growth factor-b, and tyrosine phosphorylation. Arteriosclerosis, Thrombosis, and Vascular Biology. 1999;19(8):1843-1851. https://doi.org/10.1161/01.atv.19.8.1843.

Derhaschnig U, Shehata M, Herkner H, Bur A, Woisetschläger C, Laggner AN, Hirschl MM. Increased levels of transforming growth factor-beta1 in essential hypertension. American Journal of Hypertension. 2002;15(3):207-211. https://doi.org/10.1016/s0895-7061(01)02327-5.

Liakos P, Lenz D, Bernhardt R, Feige J-J, Defaye G. Transforming growth factor beta1 inhibits aldosterone and cortisol production in the human adrenocortical cell line NCI-H295R through inhibition of CYP11B1 and CYP11B2 expression. Journal of Endocrinology. 2003;176(1):69-82. https://doi.org/10.1677/joe.0.1760069.

Matsuki K, Hathaway CK, Lawrence MG, Smithies O, Kakoki M. The role of transforming growth factor β1 in the regulation of blood pressure. Current Hypertension Reviews. 2014;10(4):223-238. https://doi.org/10.2174/157340211004150319123313.

Toma I, McCaffrey TA. Transforming growth factor-β and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell and Tissue Research. 2012;347(1):155-175. https://doi.org/10.1007/s00441-011-1189-3.

Moiseyeva OM, Lyasnikova YeA, Semenova EG, Lopatenkova OG, Shlyakhto YeV. Transformirujushhij faktor-β1 i markery aktivacii lejkocitov pri gipertonicheskoj bolezni [Transforming factor-β1 and markers of leukocytic activation in hypertensive disease]. Arterialnaja gipertenzija [Arterial Hypertension]. 2003;9(1):14-16. (Russian).

Raman M, Cobb MH. TGF-beta regulation by Emilin1: new links in the etiology of hypertension. Cell. 2006;24(5):893-895. https://doi.org/10.1016/j.cell.2006.02.031.

Krzanowski M, Janda K, Dumnicka P, Dubiel M, Stompor M, Kuśnierz-Cabala B, Grodzicki T, Sułowicz W. Relationship between aortic pulse wave velocity, selected proinflammatory cytokines, and vascular calcification parameters in peritoneal dialysis patients. Journal of Hypertension. 2014;32(1):142-148. https://doi.org/10.1097/hjh.0b013e32836569c7.

Sie MPS, Mattace-Raso FUS, Uitterlinden AG, Arp PP, Hofman A, Hoeks APG, Reneman RS, Asmar R, van Duijn CM, Witteman JCM. TGF-b1 polymorphisms and arterial stiffness; the Rotterdam Study. Journal of Human Hypertension. 2007;21(6):431-437. https://doi.org/10.1038/sj.jhh.1002175.

Orlova AYu, Artyushkova EB, Sukovatykh BS, Bushueva OYu, Polonnikov AV. Svjaz polimorfizma C-509t gena TGFB1 s riskom razvitija obliterirujushhego ateroskleroza arterij nizhnih konechnostej [Polymorphism of the C-509 gene of TGFB1 and the risk of obliterative atherosclerosis of lower limb arteries]. Klinicheskaja medicina [Clinical Medicine]. 2016;94(12):924-927. https://doi.org/10.18821/0023-2149-2016-94-12-924-927. (Russian).

Grainger DJ. Transforming growth factor β and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24(3):399-404. https://doi.org/10.1161/01.atv.0000114567.76772.33.

Kalinina NI, Kanellakis P, Ilinskaja OP, Agrotis A, Tararak JeM, Bobik A. Transformirujushhij faktor rosta-beta v ateroskleroticheskih porazhenijah u cheloveka: uchastie v reguljacii proliferacii i differencirovke makrofagov. Dostizhenija molekuljarnoj mediciny i genetiki v kardiologii. Arterialnaja gipertenzija [Arterial Hypertension]. 1999;5(1):29-30. (Russian).

Aihara K, Ikeda Y, Yagi S, Akaike M, Matsumoto T. Transforming growth factor-β1 as a common target molecule for development of cardiovascular diseases, renal insufficiency and metabolic syndrome. Cardiology Research and Practice. 2011;2011:175381. https://doi.org/10.4061/2011/175381.

Kanzaki T, Tamura K, Takahashi K, Saito Y, Akikusa B, Oohashi H, Kasayuki N, Ueda M, Morisaki N. In vivo effect of transforming growth factor-β1 (TGF-β1) on the intimal thickening of rabbit arteries injured with a balloon catheter accompanied by TGF-β receptor expression. Arteriosclerosis, Thrombosis, and Vascular Biology. 1995;15(11):1951-1957. https://doi.org/10.1161/01.atv.15.11.1951.

Borkowski P, Robinson MJ, Kusiak JW, Borkowski A, Brathwaite C, Mergner WJ. Studies on TGF-β 1 gene expression in the intima of the human aorta in regions with high and low probability of developing atherosclerotic lesions. Modern Pathology. 1995;8(5):478-482.

Grainger DJ, Kemp PR, Metcalfe JC, Liu AC, Lawn RM, Williams NR, Grace AA, Schofield PM, Chauhan A. The serum concentration of active transforming growth factor-β is severely depressed in advanced atherоsclerosis. Nature Medicine. 1995;1(1):74-79. https://doi.org/10.1038/nm0195-74.

Wang XL, Liu SX, Wilcken DE. Circulating transforming growth factor beta 1 and coronary artery disease. Cardiovascular Research. 1997;34(2):404-410. https://doi.org/10.1016/s0008-6363(97)00033-3.

Shwartz YaSh, Сheresiz YeA. Fibroznyj process pri ateroskleroze [Fibrotic process in atherosclerosis]. Ateroskleroz. 2011;7(2):57-66. (Russian).

Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. New England Journal of Medicine. 2005;352(16):1685-1695. https://doi.org/10.1056/nejmra043430.

Mallat Z, Gojova A, Marchiol-Fournigault C, Esposito B, Kamatee C, Merval R, Fradelizi D, Tedgui A. Inhibition of transforming growth factor-β signalling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circulation Research. 2001;89(10):930-934. https://doi.org/10.1161/hh2201.099415.

Shvangiradze TA, Bondarenko IZ, Troshina EA, Nikankina LV, Kuharenko SS, Shestakova MV. TFR-β i FRF-21: associacija s IBS u pacientov s saharnym diabetom 2 tipa i ozhireniem [TGF-β and FRF-21: association with IHD in patients with type 2 diabetes and obesity]. Ozhirenie i metabolism [Obesity and Metabolism]. 2017;14(3):38-42. https://doi.org/10.14341/OMET2017338-42. (Russian).

Suwanabol A, Kent KC, Liu B. TGF-β and restenosis revisited: a Smad link. Journal of Surgical Research. 2011;167(2):287-297. https://doi.org/10.1016/j.jss.2010.12.020.




Загрузок PDF: 247
Опубликован
2021-03-12
Как цитировать
1.
Левкович ТВ, Пронько ТП. РОЛЬ ТРАНСФОРМИРУЮЩЕГО ФАКТОРА РОСТА β1 В ГЕНЕЗЕ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ И ЕЕ ОСЛОЖНЕНИЙ. Журнал ГрГМУ (Journal GrSMU) [Интернет]. 12 март 2021 г. [цитируется по 29 март 2024 г.];19(1):16-2. доступно на: http://journal-grsmu.by/index.php/ojs/article/view/2430