УНИВЕРСАЛЬНЫЕ ПРИНЦИПЫ БАКТЕРИАЛЬНОЙ КОММУНИКАЦИИ

  • Т. В. Артюх Гомельский государственный медицинский университет, Гомель, Беларусь; Гродненский государственный медицинский университет, Гродно, Беларусь https://orcid.org/0000-0001-7368-0623
  • Е. А. Сидорович Гродненский государственный медицинский университет, Гродно, Беларусь https://orcid.org/0000-0001-6829-447X
  • Д. В. Тапальский Гомельский государственный медицинский университет, Гомель, Беларусь https://orcid.org/0000-0002-9484-7848
Ключевые слова: чувство кворума, сигнальные молекулы, рецепторы, экспрессия генов, подавление кворума

Аннотация

В статье представлена актуальная информация о феномене межклеточной коммуникации бактерий, ее роли в экспрессии генов вирулентности, в частности, распространении устойчивости к антибиотикам. Выделены базовые принципы функционирования кворума, присущие всем известным на сегодняшний день системам бактериальной коммуникации. Проанализированы основные сигнальные молекулы (аутоиндукторы) внутривидовой, межвидовой, эпинефриновой и пептидной связи. Оценена роль блокирования информационной связи (сигнальных молекул) между бактериями в качестве дополнительной стратегии против бактерий с экстремальной и полной антибиотикорезистентностью.

Литература

Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551(7680):313-320. https://doi.org/10.1038/nature24624.

Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry. 1981;20(9):2444-9. https://doi.org/10.1021/bi00512a013.

Subramani R, Jayaprakashvel M. Bacterial quorum sensing: biofilm formation, survival behavior and antibiotic resistance. In: Bramhachari PV, editor. Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry. Singapore: Springer; 2019. p. 21-37.

Artsiukh TV, Sokolova TN, Astrowskaja AB. The resistance peculiarities of E.coli and C.albicans clinical isolates forming a biofilm. Vitebsk medical journal. 2021;20(1):46-54. https://doi.org/10.22263/2312-4156.2021.1.46. https://elibrary.ru/hodbxp. (Russian).

Wellington S, Greenberg EP. Quorum Sensing Signal Selectivity and the Potential for Interspecies Cross Talk. mBio. 2019;10(2):e00146-19. https://doi.org/10.1128/mBio.00146-19.

Miller T, Patel K, Rodriguez C, Stabb EV, Hagen SJ. Dimension-reduction simplifies the analysis of signal crosstalk in a bacterial quorum sensing pathway. Sci Rep. 2021;11(1):19719. https://doi.org/10.1038/s41598-021-99169-0.

He YW, Deng Y, Miao Y, Chatterjee S, Tran TM, Tian J, Lindow S. DSF-family quorum sensing signal-mediated intraspecies, interspecies, and inter-kingdom communication. Trends Microbiol. 2023;31(1):36-50. https://doi.org/10.1016/j.tim.2022.07.006.

Mion S, Rémy B, Plener L, Chabrière É, Daudé D. Quorum sensing and quorum quenching: how to disrupt bacterial communication to inhibit virulence? Med Sci (Paris). 2019;35(1):31-38. https://doi.org/10.1051/medsci/2018310.

Giannakara M, Koumandou VL. Evolution of two-component quorum sensing systems. Access Microbiol. 2022;4(1):000303. https://doi.org/10.1099/acmi.0.000303.

Coquant G, Aguanno D, Pham S, Grellier N, Thenet S, Carrière V, Grill JP, Seksik P. Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World J Gastroenterol. 2021;27(42):7247-7270. https://doi.org/10.3748/wjg.v27.i42.7247.

Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial Quorum Sensing and Microbial Community Interactions. mBio. 2018;9(3):e02331-17. https://doi.org/10.1128/mBio.02331-17.

Holoidovsky L, Meijler MM. Synthesis and Evaluation of Indole-Based Autoinducers on Quorum Sensing in Vibrio cholerae. ACS Infect Dis. 2020;6(4):572-576. https://doi.org/10.1021/acsinfecdis.9b00409.

Sholpan A, Lamas A, Cepeda A, Franco CM. Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion. AIMS Microbiol. 2021;7(2):238-256. https://doi.org/10.3934/microbiol.2021015.

Defoirdt T. Quorum-Sensing Systems as Targets for Antivirulence Therapy. Trends Microbiol. 2018;26(4):313-328. https://doi.org/10.1016/j.tim.2017.10.005.

Derakhshan S, Navidinia M, Haghi F. Antibiotic susceptibility of human-associated Staphylococcus aureus and its relation to agr typing, virulence genes, and biofilm formation. BMC Infect Dis. 2021;21(1):627. https://doi.org/10.1186/s12879-021-06307-0.

Tan L, Li SR, Jiang B, Hu XM, Li S. Therapeutic Targeting of the Staphylococcus aureus Accessory Gene Regulator (agr) System. Front Microbiol. 2018;9:55. https://doi.org/10.3389/fmicb.2018.00055.

Bronesky D, Wu Z, Marzi S, Walter P, Geissmann T, Moreau K, Vandenesch F, Caldelari I, Romby P. Staphylococcus aureus RNAIII and Its Regulon Link Quorum Sensing, Stress Responses, Metabolic Adaptation, and Regulation of Virulence Gene Expression. Annu Rev Microbiol. 2016;70:299-316. https://doi.org/10.1146/annurev-micro-102215-095708.

Salvadori G, Junges R, Morrison DA, Petersen FC. Competence in Streptococcus pneumoniae and Close Commensal Relatives: Mechanisms and Implications. Front Cell Infect Microbiol. 2019;9:94. https://doi.org/10.3389/fcimb.2019.00094.

Liang Z, Qiao JQ, Li PP, Zhang LL, Qiao ZX, Lin L, Yu CJ, Yang Y, Zubair M, Gu Q, Wu HJ, Borriss R, Gao XW. A novel Rap-Phr system in Bacillus velezensis NAU-B3 regulates surfactin production and sporulation via interaction with ComA. Appl Microbiol Biotechnol. 2020;104(23):10059-10074. https://doi.org/10.1007/s00253-020-10942-z.

Misaki Y, Takahashi Y, Hara K, Tatsuno S, Arakawa K. Three 4-monosubstituted butyrolactones from a regulatory gene mutant of Streptomyces rochei 7434AN4. J Biosci Bioeng. 2022;133(4):329-334. https://doi.org/10.1016/j.jbiosc.2022.01.006.

Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17(6):371-382. https://doi.org/10.1038/s41579-019-0186-5.

Dotto C, Lombarte Serrat A, Ledesma M, Vay C, Ehling-Schulz M, Sordelli DO, Grunert T, Buzzola F. Salicylic acid stabilizes Staphylococcus aureus biofilm by impairing the agr quorum-sensing system. Sci Rep. 2021;11(1):2953. https://doi.org/10.1038/s41598-021-82308-y.

Chung LK, Raffatellu M. Probiotic fengycins dis(Agr)ee with Staphylococcus aureus colonization. Cell Res. 2019;29(2):93-94. https://doi.org/10.1038/s41422-018-0126-3.

Singh S, Bhatia S. Quorum Sensing Inhibitors: Curbing Pathogenic Infections through Inhibition of Bacterial Communication. Iran J Pharm Res. 2021;20(2):486-514. https://doi.org/10.22037/ijpr.2020.113470.14318.

Chen J, Wang B, Lu Y, Guo Y, Sun J, Wei B, Zhang H, Wang H. Quorum Sensing Inhibitors from Marine Microorganisms and Their Synthetic Derivatives. Mar Drugs. 2019;17(2):80. https://doi.org/10.3390/md17020080.

Utari PD, Setroikromo R, Melgert BN, Quax WJ. PvdQ Quorum Quenching Acylase Attenuates Pseudomonas aeruginosa Virulence in a Mouse Model of Pulmonary Infection. Front Cell Infect Microbiol. 2018;8:119. https://doi.org/10.3389/fcimb.2018.00119.

Paczkowski JE, Mukherjee S, McCready AR, Cong JP, Aquino CJ, Kim H, Henke BR, Smith CD, Bassler BL. Flavonoids Suppress Pseudomonas aeruginosa Virulence through Allosteric Inhibition of Quorum-sensing Receptors. J Biol Chem. 2017;292(10):4064-4076. https://doi.org/10.1074/jbc.M116.770552.

Yuan Y, Yang X, Zeng Q, Li H, Fu R, Du L, Liu W, Zhang Y, Zhou X, Chu Y, Zhang X, Zhao K. Repurposing Dimetridazole and Ribavirin to disarm Pseudomonas aeruginosa virulence by targeting the quorum sensing system. Front Microbiol. 2022;13:978502. https://doi.org/10.3389/fmicb.2022.978502.

Billot R, Plener L, Jacquet P, Elias M, Chabrière E, Daudé D. Engineering acyl-homoserine lactone-interfering enzymes toward bacterial control. J Biol Chem. 2020;295(37):12993-13007. https://doi.org/10.1074/jbc.REV120.013531.

Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. Recent Advances in Anti-virulence Therapeutic Strategies with a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition. Front Cell Infect Microbiol. 2019;9:74. https://doi.org/10.3389/fcimb.2019.00074.




Загрузок PDF: 163
Опубликован
2023-11-03
Как цитировать
1.
Артюх ТВ, Сидорович ЕА, Тапальский ДВ. УНИВЕРСАЛЬНЫЕ ПРИНЦИПЫ БАКТЕРИАЛЬНОЙ КОММУНИКАЦИИ. Журнал ГрГМУ (Journal GrSMU) [Интернет]. 3 ноябрь 2023 г. [цитируется по 26 январь 2025 г.];21(5):453-9. доступно на: http://journal-grsmu.by/index.php/ojs/article/view/3089