БАРЬЕРНЫЕ СТРУКТУРЫ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ ЧАСТЬ 1: ФУНКЦИИ И ПРОНИЦАЕМОСТЬ

  • С. В. Виноградов Гродненский государственный медицинский университет, Гродно, Беларусь
Ключевые слова: гематоэнцефалический барьер, гематоликворный барьер, вентрикулярный барьер, нейроваскулярная единица

Аннотация

В первой части обзора обсуждается физиология гематоэнцефалического барьера, его проницаемость в норме и при воспалении. Цитируются источники, описывающие методы воздействия на проницаемость гематоэнцефалического барьера.

Литература

Ehrlich P. Über die Beziehungen von chemischer Constitution, Vertheilung und pharmakologischer Wirkung. In: Himmelweit F, editor. The Collected Papers of Paul Ehrlich. Pergamon: Oxford; 2013. p. 570-595. (German).

Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review. Acta Physiol. 2014;210(4):790-798. https://doi.org/10.1111/apha.12250.

Salmina AB, Kuvacheva NV, Morgun A, Komleva YK, Pozhilenkova EA, Lopatina OL, Gorina YV, Taranushenko TE, Petrova LL. Glycolysis-mediated control of blood-brain barrier development and function. Int J Biochem Cell Biol. 2015;64:174-184. https://doi.org/10.1016/j.biocel.2015.04.005.

Osipova ED, Semyachkina-Glushkovskaya OV, Morgun AV, Pisareva NV, Malinovskaya NA, Boitsova EB, Pozhilenkova EA, Belova OA, Salmin VV, Taranushenko TE, Noda M, Salmina AB. Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev Neurosci. 2018;29(5):567-591. https://doi.org/10.1515/revneuro-2017-0092.

Salmina AB, Alexandrova OP, Averchuk AS, Korsakova SA, Saridis MR, Illarioshkin SN, Yurchenko SO. Current progress and challenges in the development of brain tissue models: How to grow up the changeable brain in vitro? J Tissue Eng. 2024;15:20417314241235527. https://doi.org/10.1177/20417314241235527.

Gorbachev VI, Bragina NV. Blood-brain barrier from the point of view of anesthesiologist. Review. Part 1. Annals of Critical Care. 2020;3:35-45. https://doi.org/10.21320/1818-474X-2020-3-35-45. https://elibrary.ru/samxky. (Russian).

Salmina AB, Komleva YK, Lopatina OL, Birbrair A. Pericytes in Alzheimer’s disease: novel clues to cerebral amyloid angiopathy pathogenesis. In: Birbrair A, editor. Adv Exp Med Biol. 2019;1147:147-166. https://doi.org/10.1007/978-3-030-16908-4_7.

Morgun AV, Osipova ED, Boitsova EB, Shuvaev AN, Malinovskaya NA, Mosiagina AI, Salmina AB. Neurogenic Potential of Implanted Neurospheres Is Regulated by Optogenetic Stimulation of Hippocampal Astrocytes Ex Vivo. Bull Exp Biol Med. 2021;170(6):693-698. https://doi.org/10.1007/s10517-021-05135-1. https://elibrary.ru/gbyoma.

Shtern LS, editor. Problemy gistogematicheskih barerov. Moskva: Nauka; 1963. 331 p. (Russian).

Ferguson AV, Bains JS. Electrophysiology of the circumventricular organs. Front Neuroendocrinol. 1996;17(4):440-475. https://doi.org/10.1006/frne.1996.0012.

Shen X, Xia L, Liu L, Jiang H, Shannahan J, Du Y, Zheng W. Altered clearance of beta-amyloid from the cerebrospinal fluid following subchronic lead exposure in rats: roles of RAGE and LRP1 in the choroid plexus. J Trace Elem Med Biol. 2020;61:126520. https://doi.org/10.1016/j.jtemb.2020.126520.

Pellegrini L, Lancaster MA. Breaking the barrier: in vitro models to study choroid plexus development. Curr Opin Cell Biol. 2021;73:41-49. https://doi.org/10.1016/j.ceb.2021.05.005.

Worthington WC, Cathcart RS. Ependymal cilia: distribution and activity in the adult human brain. Science. 1963;139(3551):221-222. https://doi.org/10.1126/science.139.3551.221.

Omran AJA, Saternos HC, Althobaiti YS, Wisner A, Sari Y, Nauli SM, AbouAlaiwi WA. Alcohol consumption impairs the ependymal cilia motility in the brain ventricles. Sci Rep. 2017;7(1):13652. https://doi.org/10.1038/s41598-017-13947-3.

Genzen JR, Yang D, Ravid K, Bordey A. Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells. Cerebrospinal Fluid Res. 2009;6:15. https://doi.org/10.1186/1743-8454-6-15.

Yarlagadda A, Alfson E, Clayton AH. The Blood Brain Barrier and the Role of Cytokines in Neuropsychiatry. Psychiatry (Edgmont). 2009;6(11):18-22.

Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106-107:1-16. https://doi.org/10.1016/j.pneurobio.2013.04.001.

Hagan N, Ben-Zvi A. The molecular, cellular, and morphological components of blood-brain barrier development during embryogenesis. Semin Cell Dev Biol. 2015;38:7-15. https://doi.org/10.1016/j.semcdb.2014.12.006.

Chow BW, Nuñez V, Kaplan L, Granger AJ, Bistrong K, Zucker HL, Kumar P, Sabatini BL, Gu Ch. Caveolae in CNS arterioles mediate neurovascular coupling. Nature. 2020;579(7797):106-110. https://doi.org/10.1038/s41586-020-2026-1.

Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443(7112):700-704. https://doi.org/10.1038/nature05193.

Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 2002;200(6):629-38. https://doi.org/10.1046/j.1469-7580.2002.00064.x.

Rubino E, Rainero I, Vaula G. Crasto F, Gravante E, Negro E, Brega F, Gallone S, Pinessi L. Investigating the genetic role of aquaporin4 gene in migraine. J Headache Pain. 2009;10(2):111-114. https://doi.org/10.1007/s10194-009-0100-z.

Takano T, Tian G.F, Peng W, Lou N, Libionka W, Han X, Nedergaard M. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci. 2006;9(2):260-267. https://doi.org/10.1038/nn1623.

Tontsch U, Bauer HC. Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells. Brain Res. 1991;539(2):247-253. https://doi.org/10.1016/0006-8993(91)91628-e.

Sharif AE, Abdurashitov AS, Nаmykin AA, Shirokov AA, Lykova EYu, Sarantseva EI, Iskra TD, Vodovozova EL, Khorovodov AP, Terskov AV, Mamedovа AT, Agranovich IM, Klimova MM, Semyachkina-Glushkovskaya OV. Changes in blood-brain barrier permeability under the influence of loud sound. Izvestiya of Saratov University. New Series. Series: Chemistry. Biology. Ecology. 2019;19(3):312-321. https://doi.org/10.18500/1816-9775-2019-19-3-312-321. https://elibrary.ru/rhktdn. (Russian).

Zhang SL, Yue Z, Arnold DM, Artiushin G, Sehgal A. A Circadian Clock in the Blood-Brain Barrier Regulates Xenobiotic Efflux. Cell. 2018;173(1):130-139.e10. https://doi.org/10.1016/j.cell.2018.02.017.

Vorobev SV. Pronicaemost gematojencefalicheskogo barera dlja antibiotikov pri nejroinfekcijah i sposoby ee korrekcii [master's thesis]. Sankt-Peterburg (Russia); 2003. 31 p. (Russian).

Sonabend AM, Gould A, Amidei C, Ward R, Schmidt KA, Zhang DY, Gomez C, Bebawy JF, Liu BP, Bouchoux G, Desseaux C, Helenowski IB, Lukas RV, Dixit K, Kumthekar P, Arrieta VA, Lesniak MS, Carpentier A, Zhang H, Muzzio M, Canney M, Stupp R. Repeated blood-brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: a phase 1 trial. Lancet Oncol. 2023;24(5):509-522. https://doi.org/10.1016/S1470-2045(23)00112-2.

Medyanik IA, Yakovleva EI, Galkina MV, Baskina OS, Frayerman AP, Mukhina IV. Transitory Increase of Hematoencephalic Barrier Permeability by Intracarotid Introduction of Ozonized Saline Solution. Modern Technologies in Medicine. 2017;9(2):75-82. https://doi.org/10.17691/stm2017.9.2.09. https://elibrary.ru/zdndfz. (Russian).

Calapai F, Cardia L, Sorbara E, Navarra M, Gangemi S, Calapai G, Mannucci C. Cannabinoids, Blood-Brain Barrier, and Brain Disposition. Pharmaceutics. 2020;12(3):265. https://doi.org/10.3390/pharmaceutics12030265.

Aparicio-Blanco J, Romero IA, Male DK, Slowing K, García-García L, Torres-Suárez AI. Cannabidiol Enhances the Passage of Lipid Nanocapsules across the Blood-Brain Barrier Both in Vitro and in Vivo. Mol Pharm. 2019;16(5):1999-2010. https://doi.org/10.1021/acs.molpharmaceut.8b01344.

Malin DI, Pavlova OV, Bayramova SP, Gurina OI, Mosolov SN. The effect of electroconvulsive therapy on the dynamics of blood-brain barrier permeability biomarkers and electroencephalogram characteristics in patient with schizophrenia (clinical case description). Current Therapy of Mental Disorders. 2025;1:60-66. https://doi.org/10.48612/psyph/419u-5b3k-6mur. https://elibrary.ru/etckgg. (Russian).

Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophilinduced blood-brain barrier breakdown in vivo. Neuroscience. 1998;86(4):1245-1257. https://doi.org/10.1016/s0306-4522(98)00058-x.

Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000;2(20):131-147. https://doi.org/10.1023/a:1007074420772.

Cardoso FL, Kittel A, Veszelka S, Palmela I, Tóth A, Brites D, Deli MA, Brito MA. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PloS One. 2012;5(7):e35919. https://doi.org/10.1371/journal.pone.0035919.




Загрузок PDF: 0
Опубликован
2026-02-09
Как цитировать
1.
Виноградов СВ. БАРЬЕРНЫЕ СТРУКТУРЫ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ ЧАСТЬ 1: ФУНКЦИИ И ПРОНИЦАЕМОСТЬ. Журнал ГрГМУ (Journal GrSMU) [Интернет]. 9 февраль 2026 г. [цитируется по 12 февраль 2026 г.];23(6):559-64. доступно на: http://journal-grsmu.by/index.php/ojs/article/view/3327