ГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ УСТОЙЧИВОСТИ БАКТЕРИЙ К ЦИПРОФЛОКСАЦИНУ (ЛИТЕРАТУРНЫЙ ОБЗОР)

  • М. В. Марцулевич Гродненский государственный медицинский университет, Гродно, Беларусь https://orcid.org/0009-0003-1203-8102
  • Т. Н. Соколова Гродненский государственный медицинский университет, Гродно, Беларусь https://orcid.org/0000-0002-4075-4515
Ключевые слова: резистентность, фторхинолоны, мутации, гены резистентности, ферменты-мишени, PMQR (Plasmid-Mediated Quinolone Resistance)

Аннотация

Ципрофлоксацин как представитель группы фторхинолонов широко используется для лечения инфекций, вызванных как грамположительными, так и грамотрицательными бактериями. Тем не менее, в последние годы отмечается увеличение роста устойчивости к данному лекарственному средству, что может быть связано с чрезмерным использованием ципрофлоксацина ввиду его широкого спектра действия. В связи с этим в целях разработки новых и эффективных средств против лекарственно-устойчивых патогенов существует необходимость исследования и анализа таких механизмов устойчивости к ципрофлоксацину, как модификация молекулы-мишени, изменение проникновения препарата и плазмид-опосредованная резистентность к хинолонам. В данной статье представлена современная информация о генетических механизмах устойчивости бактерий к противомикробным средствам группы фторхинолонов.

Литература

World Health Organization. Antimicrobial resistance global report on surveillance: 2014 summary [Internet]. Available from: https://www.who.int/publications/i/item/WHO-HSE-PED-AIP-2014.2.

Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr. 2016;4(2):1-37. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.

Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep. 2020;21(12):e51034. https://doi.org/10.15252/embr.202051034.

Dersch P, Khan MA, Mühlen S, Görke B. Roles of Regulatory RNAs for Antibiotic Resistance in Bacteria and Their Potential Value as Novel Drug Targets. Front Microbiol. 2017;8:803. https://doi.org/10.3389/fmicb.2017.00803.

Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65(1):34-44. https://doi.org/10.1139/cjm-2018-0275.

Bhat BA, Mir RA, Qadri H, Dhiman R, Almilaibary A, Alkhanani M, Mir MA. Integrons in the development of antimicrobial resistance: critical review and perspectives. Front Microbiol. 2023;14:1231938. https://doi.org/10.3389/fmicb.2023.1231938.

Smirnov GB. Mechanisms of acquisition and loss of genetic information by bacterial genomes. Uspekhi sovremennoi biologii. 2008;128(1):52-76. edn: ICEERJ. (Russian).

Sabbagh P, Rajabnia M, Maali A, Ferdosi-Shahandashti E. Integron and its role in antimicrobial resistance: A literature review on some bacterial pathogens. Iran J Basic Med Sci. 2021;24(2):136-142. https://doi.org/10.22038/ijbms.2020.48905.11208.

Ruiz J. Transferable Mechanisms of Quinolone Resistance from 1998 Onward. Clin Microbiol Rev. 2019;32(4):e00007-19. https://doi.org/10.1128/CMR.00007-19.

Majalekar PP, Shirote PJ. Fluoroquinolones: Blessings or Curses. Curr Drug Targets. 2020;21(13):1354-1370. https://doi.org/10.2174/1389450121666200621193355.

Eyler RF, Shvets K. Clinical Pharmacology of Antibiotics. Clin J Am Soc Nephrol. 2019;14(7):1080-1090. https://doi.org/10.2215/CJN.08140718.

Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem. 2018;146:599-612. https://doi.org/10.1016/j.ejmech.2018.01.078.

Naeem A, Badshah SL, Muska M, Ahmad N, Khan K. The Current Case of Quinolones: Synthetic Approaches and Antibacterial Activity. Molecules. 2016;21(4):268. https://doi.org/10.3390/molecules21040268.

Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol. 2017;66(5):551-559. https://doi.org/10.1099/jmm.0.000475.

Rodríguez-Martínez JM, Machuca J, Cano ME, Calvo J, Martínez-Martínez L, Pascual A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist Updat. 2016;29:13-29. https://doi.org/10.1016/j.drup.2016.09.001.

Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645-1658. https://doi.org/10.2147/IDR.S173867.

Shaheen A, Tariq A, Iqbal M, Mirza O, Haque A, Walz T, Rahman M. Mutational Diversity in the Quinolone Resistance-Determining Regions of Type-II Topoisomerases of Salmonella Serovars. Antibiotics (Basel). 2021;10(12):1455. https://doi.org/10.3390/antibiotics10121455.

Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci. 2015;1354(1):12-31. https://doi.org/10.1111/nyas.12830.

Lepe JA, Martínez-Martínez L. Resistance mechanisms in Gram-negative bacteria. Med Intensiva (Engl Ed). 2022;46(7):392-402. https://doi.org/10.1016/j.medine.2022.05.004.

Ruiz J. Transferable Mechanisms of Quinolone Resistance from 1998 Onward. Clin Microbiol Rev. 2019;32(4):e00007-19. https://doi.org/10.1128/CMR.00007-19.

Heidary M, Bahramian A, Hashemi A, Goudarzi M, Omrani VF, Eslami G, Goudarzi H. Detection of acrA, acrB, aac(6')-Ib-cr, and qepA genes among clinical isolates of Escherichia coli and Klebsiella pneumoniae. Acta Microbiol Immunol Hung. 2017;64(1):63-69. https://doi.org/10.1556/030.63.2016.011.

Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules. 2020;25(23):5662. https://doi.org/10.3390/molecules25235662.

Raherison S, Jove T, Gaschet M, Pinault E, Tabesse A, Torres C, Ploy MC. Expression of the aac(6')-Ib-cr Gene in Class 1 Integrons. Antimicrob Agents Chemother. 2017;61(5):e02704-16. https://doi.org/10.1128/AAC.02704-16.

Machuca J, Ortiz M, Recacha E, Díaz-De-Alba P, Docobo-Perez F, Rodríguez-Martínez JM, Pascual Á. Impact of AAC(6')-Ib-cr in combination with chromosomal-mediated mechanisms on clinical quinolone resistance in Escherichia coli. J Antimicrob Chemother. 2016;71(11):3066-3071. https://doi.org/10.1093/jac/dkw258.

Yanat B, Rodríguez-Martínez JM, Touati A. Plasmid-mediated quinolone resistance in Enterobacteriaceae: a systematic review with a focus on Mediterranean countries. Eur J Clin Microbiol Infect Dis. 2017;36(3):421-435. https://doi.org/10.1007/s10096-016-2847-x.

Shariati A, Arshadi M, Khosrojerdi MA, Abedinzadeh M, Ganjalishahi M, Maleki A, Heidary M, Khoshnood S. The resistance mechanisms of bacteria against ciprofloxacin and new approaches for enhancing the efficacy of this antibiotic. Front Public Health. 2022;10:1025633. https://doi.org/10.3389/fpubh.2022.1025633.




Загрузок PDF: 198
Опубликован
2024-01-08
Как цитировать
1.
Марцулевич МВ, Соколова ТН. ГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ УСТОЙЧИВОСТИ БАКТЕРИЙ К ЦИПРОФЛОКСАЦИНУ (ЛИТЕРАТУРНЫЙ ОБЗОР). Журнал ГрГМУ (Journal GrSMU) [Интернет]. 8 январь 2024 г. [цитируется по 23 декабрь 2024 г.];21(6):531-5. доступно на: http://journal-grsmu.by/index.php/ojs/article/view/3102