ПРОИЗВОДНЫЕ МОРФОЛИНА В ПСИХОФАРМАКОЛОГИИ

  • В. И. Козловский Гродненский государственный медицинский университет, Гродно, Беларусь https://orcid.org/0000-0002-8153-7963
  • М. И. Яколцевич Гродненский государственный медицинский университет, Гродно, Беларусь
Ключевые слова: производные морфолина, анксиолитические, антидепрессантные, ноотропные, антипсихотические свойства

Аннотация

Производные морфолина – это азотсодержащие соединения, представляющие большой интерес для психофармакологии. В частности, среди них есть лекарственные средства, используемые в клинике для лечения психиатрических заболеваний и синдромов: анксиолитик фабомотизол (афобазол), антидепрессанты ребоксетин и моклобемид, также ребоксетин и вилоксазин применяются при синдроме дефицита внимания и гиперактивности. Кроме того, в настоящей статье приводится информация о ряде других производных морфолина, обладающих анксиолитической, ноотропной и антипсихотической активностью.

Литература

Neznamov GG, Siuniakov SA, Chumakov DV, Bochkarev VK, Seredenin SB. Rezultaty klinicheskogo izucheniia selektivnogo anksiolitika afobazola [Clinical study of the selective anxiolytic agent afobazol]. Eksperimentalnaja i klinicheskaja farmakologija [Eksp Klin Farmakol]. 2001;64(2):15-19. https://www.elibrary.ru/mphxhp. (Russian).

Syunyakov TS, Neznamov GG. Ocenka terapevticheskoj effektivnosti i bezopasnosti selektivnogo anksiolitika afobazola pri generalizovannom trevozhnom rasstrojstve i rasstrojstvah adaptacii: rezultaty mnogocentrovogo randomizirovannogo sravnitelnogo s diazepamom issledovanija [Evaluation of the therapeutic efficacy and safety of the selective anxiolytic afobazole in generalized anxiety disorder and adjustment disorders: results of a multicenter randomized comparative study of diazepam] Terapevticheskii arkhiv [Therapeutic archive]. 2016;88(8):73-86. https://doi.org/10.17116/terarkh201688873-86. https://www.elibrary.ru/wkgcfj. (Russian).

Abramova EV, Voronin MV, Seredenin SB. Analiz sv- jazyvajushchej sposobnosti Sigma-1 receptorov pri emocionalno-stressovom vozdejstvii i vvedenii anksiolitika afobazola [Analysis of Sigma-1 receptor binding ability under emotional stress and upon administration of the anxiolytic afobazole]. Khimiko-farmatsevticheskii zhurnal [Pharmaceutical Chemistry Journal]. 2019;53(8):3-7. https://doi.org/10.30906/0023-1134-2019-53-8-3-7. https://www.elibrary.ru/gnphqq. (Russian).

Hayashi T, Tsai SY, Mori T, Fujimoto M, Su TP. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin Ther Targets. 2011;15(5):557-77. https://doi.org/10.1517/14728222.2011.560837

Seredenin SB, Voronin MV. Nejroreceptornye mehanizmy dejstvija afobazola [Neuroreceptor mechanisms involved in the action of afobazole]. Éksperimentalnaya i Klinicheskaya Farmakologiya [Experimental and Clinical Pharmacology]. 2009;72(1):3-11. https://www.elibrary.ru/tnkdhh. (Russian).

Seredenin AB, Melkumyan DS, Valdman EA, Yarkova MA, Seredenina TS, Voronin MV, Lapitskaya AS. Vlijanije afobazola na soderzhanije BDNF v strukturah mozga inbrednyh myshej s razlichnym fenotipom emocionalno-stressovoj reakcii [Effects of afobazole on the BDNF content in brain structures of inbred mice with different phenotypes of emotional stress reaction]. Éksperimentalnaya i Klinicheskaya Farmakologiya [Experimental and Clinical Pharmacology]. 2006;69(3):3-6. https://www.elibrary.ru/szxcfb. (Russian).

Lisboa SF, Niraula A, Resstel LB, Guimaraes FS, Godbout JP, Sheridan JF. Repeated social defeat-induced neuroinflammation, anxiety-like behavior and resistance to fear extinction were attenuated by the cannabinoid receptor agonist WIN55,212-2. Neuropsychopharmacology. 2018;43(9):1924-1933. https://doi.org/10.1038/s41386-018-0064-2

Abbassian H, Esmaeili P, Tahamtan M, Aghaei I, Vaziri Z, Sheibani V, Whalley BJ, Shabani M. Cannabinoid receptor agonism suppresses tremor, cognition disturbances and anxiety-like behaviors in a rat model of essential tremor. Physiol Behav. 2016;164(Pt A):314-20. https://doi.org/10.1016/j.physbeh.2016.06.013

Zhang M, Zhou D, Wang Y, Maier DL, Widzowski DV, Sobotka-Briner CD, Brockel BJ, Potts WM, Shenvi AB, Bernstein PR, Pierson ME. Preclinical pharmacology and pharmacokinetics of AZD3783, a selective 5-hydroxy- tryptamine 1B receptor antagonist. J Pharmacol Exp Ther. 2011;339(2):567-78. https://doi.org/10.1124/jpet.110.174433

Krishna V, Bairy KL, Patil N, Sunny SV. Evaluation of the antianxiety and antidepressant activities of mosapride in Wistar albino rats. J Basic Clin Physiol Pharmacol. 2019;30(4):20180089. https://doi.org/10.1515/jbcpp-2018-0089

Frankowska M, Filip M, Przegaliński E. Effects of GABAB receptor ligands in animal tests of depression and anxiety. Pharmacol Rep. 2007;59(6):645-55.

Cheeta S, Tucci S, Sandhu J, Williams AR, Rupniak NM, File SE. Anxiolytic actions of the substance P (NK1) receptor antagonist L-760735 and the 5-HT1A agonist 8-OH-DPAT in the social interaction test in gerbils. Brain Res. 2001;915(2):170-175. https://doi.org/10.1016/S0006-8993(01)02846-3

Kalouda T, Pitsikas N. The nitric oxide donor molsidomine induces anxiolytic-like behaviour in two different rat models of anxiety. Pharmacol Biochem Behav. 2015;138:111-116. https://doi.org/10.1016/j.pbb.2015.09.004

Wong EH, Sonders MS, Amara SG, Tinholt PM, Piercey MF, Hoffmann WP, Hyslop DK, Franklin S, Porsolt RD, Bonsignori A, Carfagna N, McArthur RA. Reboxetine: a pharmacologically potent, selective, and specif- ic norepinephrine reuptake inhibitor. Biol Psychiatry. 2000;47(9):818-29. https://doi.org/10.1016/S0006-3223(99)00291-7

Hajós M, Hoffmann WE, Robinson DD, Yu JH, Hajós- Korcsok E. Norepinephrine but not serotonin reuptake inhibitors enhance theta and gamma activity of the septo-hippocampal system. Neuropsychopharmacology. 2003;28(5):857-864. https://doi.org/10.1038/sj.npp.1300116

Frazer A, Benmansour S. Delayed pharmacological effects of antidepressants. Mol Psychiatry. 2002;7 Suppl 1:S23-8. https://doi.org/10.1038/sj.mp.4001015

Burrows GD, Maguire KP, Norman TR. Antidepressant efficacy and tolerability of the selective norepinephrine reuptake inhibitor reboxetine: a review. J Clin Psychiatry. 1998;59 Suppl 14:4-7.

Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, Leucht S, Ruhe HG, Turner EH, Higgins JPT, Egger M, Takeshima N, Hayasaka Y, Imai H, Shinohara K, Tajika A, Ioannidis JPA, Geddes JR. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391(10128):1357-1366. https://doi.org/10.1016/S0140-6736(17)32802-7

Simpson GM, Gratz SS. Comparison of the pressor effect of tyramine after treatment with phenelzine and moclobemide in healthy male volunteers. Clin Pharmacol Ther. 1992;52(3):286-91. https://doi.org/10.1038/clpt.1992.143

Lapierre YD, Joffe R, McKenna K, Bland R, Kennedy S, Ingram P, Reesal R, Rickhi BG, Beauclair L, Chouinard G, Annable L. Moclobemide versus fluoxetine in the treat- ment of major depressive disorder in adults. J Psychiatry Neurosci. 1997;22(2):118-26.

Gattaz WF, Vogel P, Kick H, Kohnen R. Moclobemide versus fluoxetine in the treatment of inpatients with ma- jor depression. J Clin Psychopharmacol. 1995;15(4 Suppl 2):35S-40S. https://doi.org/10.1097/00004714-199508001-00007

Versiani M, Amrein R, Stabl M. Moclobemide and imipramine in chronic depression (dysthymia): an international double-blind, placebo-controlled trial. International Collaborative Study Group. Int Clin Psychopharmacol. 1997;12(4):183-93. https://doi.org/10.1097/00004850-199707000-00001

Serretti A, Chiesa A. Treatment-emergent sexual dysfunction related to antidepressants: a meta-analysis. J Clin Psychopharmacol. 2009;29(3):259-66. https://doi.org/10.1097/JCP.0b013e3181a5233f

Cegielska-Perun K, Bujalska-Zadrożny M, Gąsińska E, Makulska-Nowak HE. Enhancement of antinociceptive effect of morphine by antidepressants in diabetic neuro- pathic pain model. Pharmacol Rep. 2014;66(2):228-34. https://doi.org/10.1016/j.pharep.2013.09.003

Hampson RE, España RA, Rogers GA, Porrino LJ, Deadwyler SA. Mechanisms underlying cognitive en- hancement and reversal of cognitive deficits in nonhuman primates by the ampakine CX717. Psychopharmacology (Berl). 2009;202(1-3):355-69. https://doi.org/10.1007/s00213-008-1360-z

Esbenshade TA, Fox GB, Krueger KM, Baranowski JL, Miller TR, Kang CH, Denny LI, Witte DG, Yao BB, Pan JB, Faghih R, Bennani YL, Williams M, Hancock AA. Pharmacological and behavioral properties of A-349821, a selective and potent human histamine H3 receptor antagonist. Biochem Pharmacol. 2004;68(5):933-45. https://doi.org/10.1016/j.bcp.2004.05.048

Pérez-Valenzuela C, Gárate-Pérez MF, Sotomayor-Zárate R, Delano PH, Dagnino-Subiabre A. Reboxetine Improves Auditory Attention and Increases Norepinephrine Levels in the Auditory Cortex of Chronically Stressed Rats. Front Neural Circuits. 2016;10:108. https://doi.org/10.3389/fncir.2016.00108

Arabgol F, Panaghi L, Hebrani P. Reboxetine versus methylphenidate in treatment of children and adolescents with attention deficit-hyperactivity disorder. Eur Child Adolesc Psychiatry. 2009;18(1):53-9. https://doi.org/10.1007/s00787-008-0705-9

Padilha SCOS, Virtuoso S, Tonin FS, Borba HHL, Pontarolo R. Efficacy and safety of drugs for attention deficit hyperactivity disorder in children and adolescents: a network meta-analysis. Eur Child Adolesc Psychiatry. 2018;27(10):1335-1345. https://doi.org/10.1007/s00787-018-1125-0

Edinoff AN, Akuly HA, Wagner JH, Boudreaux MA, Kaplan LA, Yusuf S, Neuchat EE, Cornett EM, Boyer AG, Kaye AM, Kaye AD. Viloxazine in the Treatment of Attention Deficit Hyperactivity Disorder. Front Psychiatry. 2021;12:789982. https://doi.org/10.3389/fpsyt.2021.789982

Arakawa K, Maehara S, Yuge N, Ishikawa M, Miyazaki Y, Naba H, Kato Y, Nakao K. Pharmacological characterization of a novel potent, selective, and orally active phosphodiesterase 10A inhibitor, PDM-042 [(E)-4-(2- (2-(5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl) vinyl)-6-(pyrrolidin-1-yl)pyrimidin-4-yl)morpholine] in rats: potential for the treatment of schizophrenia. Pharmacol Res Perspect. 2016;4(4):e00241. https://doi.org/10.1002/prp2.241

Tadmor H, Golani I, Doron R, Kremer I, Shamir A. ErbB signaling antagonist ameliorates behavioral deficit induced by phencyclidine (PCP) in mice, without affecting metabolic syndrome markers. Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:322-331. https://doi.org/10.1016/j.pnpbp.2017.08.010




Загрузок PDF: 212
Опубликован
2022-07-18
Как цитировать
1.
Козловский ВИ, Яколцевич МИ. ПРОИЗВОДНЫЕ МОРФОЛИНА В ПСИХОФАРМАКОЛОГИИ. Журнал ГрГМУ (Journal GrSMU) [Интернет]. 18 июль 2022 г. [цитируется по 24 ноябрь 2024 г.];20(3):249-54. доступно на: http://journal-grsmu.by/index.php/ojs/article/view/2796