АТФ-СИНТАЗА МИТОХОНДРИЙ



DOI: http://dx.doi.org/10.25298/2221-8785-2020-18-6-648-654


Е. В. Узлова, С. М. Зиматкин

Аннотация


В настоящем обзоре собраны и проанализированы имеющиеся на сегодняшний день данные о строении и организации, расположении, механизмах работы и функциях универсального в живой природе и уникального по своим характеристикам фермента синтеза АТФ – АТФ-синтазы. Ассоциированная в димеры АТФ-синтаза митохондрий, кроме синтазной и гидролазной активности, «изгибает» внутреннюю мембрану этих органелл. С нарушениями АТФ-синтазы ассоциировано большое количество заболеваний, в том числе нейродегенеративных и митохондриальных, которые, кроме прочего, сопровождаются изменениями структуры крист митохондрий.

Ключевые слова


АТФ-синтаза; митохондрии; окислительное фосфорилирование; мозг

Полный текст:

Литература


Schapira, A. H. Mitochondrial disease / A. H. Schapira // Lancet. – 2006. – Vol. 368, No 9529. – P. 70-82. – doi: 10.1016/S0140-6736(06)68970-8.

Recommendations on Biochemical & Organic Nomenclature, Symbols & Terminology etc. [Electronic resource] / International Union of Biochemistry and Molecular biology // Queen Mary University of London. – Mode of access: https://www.qmul.ac.uk/sbcs/iubmb. – Date of access: 29.04.2020.

Nannenga, B. L. Protein structure determination by MicroED / B. L. Nannenga, T. Gonen // Curr. Opin. Struct. Biol. – 2014. – Vol. 27. – P. 24-31. – doi: 10.1016/j.sbi.2014.03.004.

Devenish, R. J. The structure and function of mitochondrial F1F0-ATP synthases / R. J. Devenish, M. Prescott, A. J. Rodgers // Int. Rev. Cell. Mol. Biol. – 2008. – Vol. 267. – P. 1-58. – doi: 10.1016/S1937-6448(08)00601-1.

Walker, J. E. The peripheral stalk of the mitochondrial ATP synthase / J. E. Walker, V. K. Dickson // Biochim. Biophys. Acta. – 2006. – Vol. 1757, No 5-6. – P. 286-296. – doi: 10.1016/j.bbabio.2006.01.001.

Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria / I. N. Watt [et al.] // PNAS. – 2010. – Vol. 107, iss. 39. – P. 16823-16827. – doi: 10.1073/pnas.1011099107.

Xu, T. Understanding structure, function, and mutations in the mitochondrial ATP synthase / T. Xu, V. Pagadala, D. M. Mueller // Microb. Cell. – 2015. – Vol. 2, No 4. – P. 105-125. – doi: 10.15698/mic2015.04.197.

Structure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM / A. Zhou [et al.] // Elife. – 2015. – Vol. 4. – P. e10180. – doi: 10.7554/eLife.10180.

Role of the mitochondrial ATP synthase central stalk subunits γ and δ in the activity and assembly of the mammalian enzyme / P. Pecina [et al.] // Biochim. Biophys. Acta. Bioenerg. – 2018. – Vol. 1859, iss. 5. – P. 374-381. – doi: 10.1016/j.bbabio.2018.02.007.

Dimer ribbons of ATP synthase shape the inner mitochondrial membrane / M. Strauss [et al.] // EMBO J. – 2008. – Vol. 27, iss. 7. – P. 1154-1160. – doi: 10.1038/emboj.2008.35.

High-resolution structure of the rotor ring of a proton-de-pendent ATP synthase / D. Pogoryelov [et al.] // Nat. Struct. Mol. Biol. – 2009. – Vol. 16, iss. 10. – P. 1068-1073. – doi: 10.1038/nsmb.1678.

The oligomycin axis of mitochondrial ATP synthase: OSCP and the proton channel / R. J. Devenish [et al.] // J. Bioenerg. Biomembr. – 2000. – Vol. 32, iss. 5. – P. 507-515. – doi: 10.1023/a:1005621125812.

Dimer of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows / T. B. Blum [et al.] // PNAS. – 2019. – Vol. 116, iss. 10. – P. 4250-4255. – doi: 10.1073/pnas.1816556116.

Capaldi, R. A. Mechanism of the F1F0-type ATP synthase, a biological rotary motor / R. A. Capaldi, R. Aggeler // Trends Biochem. Sci. – 2002. – Vol. 27, iss. 3. – P. 154-160. – doi: 10.1016/s0968-0004(01)02051-5.

Boyer, P. D. A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport / P. D. Boyer // FEBS Lett. – 1975. – Vol. 58, iss. 1. – P. 1-6. – doi: 10.1016/0014-5793(75)80212-2.

Boyer, P. D. The binding change mechanism for ATP synthase – some probabilities and possibilities / P. D. Boyer // Biochim. Biophys. Acta. – 1993. – Vol. 1140, iss. 3. – P. 215-250. – doi: 10.1016/0005-2728(93)90063-l.

Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1 / M. Campanella [et al.] // Cell. Metab. – 2008. – Vol. 8, iss. 1. – P. 13-25. – doi: 10.1016/j.cmet.2008.06.001.

Boyer, P. D. The present status of the binding-change mechanism and its relation to ATP formation by chloroplasts / P. D. Boyer, W. E. Kohlbrenner // Energy Coupling in Photosynthesis / ed.: B. R. Selman, S. Selman-Reimer. – New York, 1981. – P. 231-240.

Mechanically driven ATP synthesis by F1-ATPase / H. Itoh [et al.] // Nature. – 2004. – Vol. 427, No 6973. – P. 465-468. – doi: 10.1038/nature02212.

Kinosita, K. Jr. F1-ATPase: a highly efficient rotary ATP machine / K. Jr. Kinosita, R. Yasuda, H. Noji // Essays Biochem. – 2000. – Vol. 35. – P. 3-18. – doi: 10.1042/bse0350003.

Pullman, M. E. A Naturally Occurring Inhibitor of Mitochondrial Adenosine Triphosphatase / M. E. Pullman, G. C. Monroy // J. Biol. Chem. – 1963. – Vol. 238. – P. 3762-3769.

Recombinant bovine heart mitochondrial F1-ATPase inhibitor protein: overproduction in Escherichia coli, purification and structural studies / G. Van Heeke [et al.] // Biochemistry. – 1993. – Vol. 32, No 38. – P. 10140-10149. – doi: 10.1021/bi00089a033.

IF1: setting the pace of the F1FO-ATP synthase / M. Campanella [et al.] // Trends Biochem. Sci. – 2009. – Vol. 34, iss. 7. – P. 343-350. – doi: 10.1016/j.tibs.2009.03.006.

Nicholls, D. G. The hunt for the molecular mechanism of brown fat thermogenesis / D. G. Nicholls // Biochimie. – 2017.–Vol. 134.– P. 9-18. – doi: 10.1016/j.biochi.2016.09.003.

Crichton, P. G. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism / P. G. Crichton, Y. Lee, E. R. Kunji // Biochimie. – 2017. – Vol. 134. – P. 35-50. – doi: 10.1016/j.biochi.2016.12.016.

Regulation of the uncoupling protein in brown adipose tissue / K. F. La Noue [et al.] // J. Biol. Chem. – 1986. – Vol. 261, No 1. – P. 298-305.

Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae / K. M. Davies [et al.] // PNAS. – 2012. – Vol. 109, No 34 – P. 13602-13607. – doi: 10.1073/pnas.1204593109.

The ATP synthase is involved in generating mitochondrial cristae morphology / P. Paumard [et al.] // EMBO J. – 2002. – Vol. 21, iss. 3. – P. 221-230. – doi: 10.1093/emboj/21.3.221.

Macromolecular organization of ATP synthase and complex I in whole mitochondria / K. M. Davies [et al.] // PNAS. – 2011. – Vol. 108, No 34. – P. 14121-14126. – doi: 10.1073/pnas.1103621108.

Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology / A. Hahn [et al.] // Mol. Cell. – 2016. – Vol. 63, No 3. – P. 445-456. – doi: 10.1016/j.molcel.2016.05.037.

Minauro-Sanmiguel, F. Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis / F. Minauro-Sanmiguel, S. Wilkens, J. J. García // PNAS. – 2005. – Vol. 102, No 35. – P. 12356-12358. – doi: 10.1073/pnas.0503893102.

In vivo inhibition of the mitochondrial H+-ATP synthase in neurons promotes metabolic preconditioning / L. Formentini [et al.] // EMBO J. – 2014. – Vol. 33, iss. 7. – P. 762-778. – doi: 10.1002/embj.201386392.

Garcia-Bermudez, J. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival / J. Garcia-Bermudez, J. M. Cuezva // Biochim. Biophys. Acta. – 2016. – Vol. 1857, iss. 8. – P. 1167-1182. – doi: 10.1016/j.bbabio.2016.02.004.

Ahmad, Z. Medicinal chemistry of ATP synthase: a potential drug target of dietary polyphenols and amphibian antimicrobial peptides / Z. Ahmad, T. F. Laughlin // Curr. Med. Chem. – 2010. – Vol.17, iss. 25. – P. 2822-2836. – doi: 10.2174/092986710791859270.

Pathogenic VCP Mutations Induce Mitochondrial Uncoupling and Reduced ATP Levels / F. Bartolome [et al.] // Neuron. – 2013. – Vol. 78, iss. 1. – P. 57-64. – doi: 10.1016/j.neuron.2013.02.028.

Structure, functioning, and assembly of the ATP synthase in cells from patients with the T8993G mitochondrial DNA mutation. Comparison with the enzyme in Rho(0) cells completely lacking mtdna / J. J. García [et al.] // J. Biol. Chem. – 2000. – Vol. 275, iss. 15. – P. 11075-11081. – doi: 10.1074/jbc.275.15.11075.

ATP Synthase Diseases of Mitochondrial Genetic Origin / A. Dautant [et al.] // Front. Physiol. – 2018. – Vol. 9. – P. 329. – doi: 10.3389/fphys.2018.00329.

Mitochondrial ATP synthase disorders: molecular mechanisms and the quest for curative therapeutic approaches / R. Kucharczyk [et al.] // Biochim. Biophys. Acta. – 2009. – Vol. 1793, iss. 1. – P. 186-199. – doi: 10.1016/j.bbamcr.2008.06.012.

ATP Synthase: A Molecular Therapeutic Drug Target for Antimicrobial and Antitumor Peptides / Z. Ahmad [et al.] // Curr. Med. Chem. – 2013. – Vol. 20, iss. 15. – P. 1956-1973. – doi: 10.2174/0929867311320150003.

Hong, S. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease and other scientific areas / S. Hong, P. L. Pedersen // Microbiol. Mol. Biol. Rev. – 2008. – Vol. 72, iss. 4. – P. 590-641. – doi: 10.1128/MMBR.00016-08.

Mitochondria, oxidative stress and neurodegeneration / A. Federico [et al.] // J. Neurol. Sci. – 2012. – Vol. 322, No 1-2. – P. 254-262. – doi: 10.1016/j.jns.2012.05.030.

Scholte, H. R. The biochemical basis of mitochondrial diseases / H. R. Scholte // J. Bioenerg. Biomembr. – 1988. – Vol. 20, No 2. – P. 161-191. – doi: 10.1007/BF00768393.

The role of mitochondria in neurodegenerative diseases / M. Filosto [et al.] // J. Neurol. – 2011. – Vol. 258, iss. 10. – P. 1763-1764. – doi: 10.1007/s00415-011-6104-z.

Magistretti, P. J. Cellular mechanisms of brain energy metabolism. Relevance to functional brain imaging and to neurodegenerative disorders / P. J. Magistretti, L. Pellerin // Ann. N. Y. Acad. Sci. – 1996. – Vol. 777, No 1. – P. 380-387. – doi: 10.1111/j.1749-6632.1996.tb34449.x.

Mitochondrial ATP-Synthase in the Entorhinal Cortex Is a Target of Oxidative Stress as Stages I/II of Alzheimer’s Disease Pathology / B. Terni [et al.] // Brain Pathol. – 2010. – Vol. 20, iss. 1. – P. 222-233. – doi: 10.1111/j.1750-3639.2009.00266.x.

Redox proteomic identification of 4-hydroxy-2-non-enal-modified brain proteins in amnestic mild-cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease / T. Reed [et al.] // Neurobiol. Dis. – 2008. – Vol. 30, iss. 1. – P. 107-120. – doi: 10.1016/j.nbd.2007.12.007.

Емельянчик, С. В. Изменения иммунореактивности АТФ-синтазы в нейронах коры мозга и мозжечка крыс при холестазе / С. В. Емельянчик [и др.] // Вестник Смоленской государственной медицинской академии. – 2018. – Т. 17, No 2. – C. 55-60.

Mitochondrial dysfunction in the hypertensive rat brain: respiratory complexes exhibit assembly defects in hypertension / A. Lopez-Campistrous [et al.] // Hypertension. – 2008. – Vol. 51, iss. 2. – P. 412-419. – doi: 10.1161/HYPERTENSIONAHA.107.102285.


Ссылки

  • На текущий момент ссылки отсутствуют.