УДК 612.127.2:612.014.464:616.152.21

КИСЛОРОДТРАНСПОРТНАЯ ФУНКЦИЯ КРОВИ И ПРООКСИДАНТНО-АНТИОКСИДАНТНОЕ СОСТОЯНИЕ ОРГАНИЗМА В УСЛОВИЯХ КОРРЕКЦИИ L-АРГИНИН-NO СИСТЕМЫ ПРИ ВВЕДЕНИИ ЛИПОПОЛИСАХАРИДА

Е.В. Шульга

УО «Гродненский государственный медицинский университет»

В исследовании на кроликах было показано, что селективная коррекция L-аргинин-NO системы аминогуанидином через NO-зависимый механизм улучшает показатели кислородтранспортной функции крови, повышает СГК и участвует в поддержании прооксидантно-антиоксидантного баланса организма через 12 часов после инъекции липополисахарида.

Ключевые слова: аминогуанидин, липополисахарид, кислород, оксид азота, антиоксидант.

In investigation on rabbits it has been shown that selective correction of the L-arginine-NO system by aminoguanidine through the NO-dependent mechanism improves parameters of oxygen transport function of blood, increases hemoglobin – oxygen affinity and participates in the maintenance of prooxidant-antioxidant balance of the organism 12 hours later after lipopolysaccharide injection.

Key words: aminoguanidine, lipopolysaccharide, oxygen, nitric oxide, antioxidant.

Введение

Липополисахарид (ЛПС) повышает выработку провоспалительных цитокинов, таких как фактор некроза опухоли-а, активирует ядерный факторкарраВ, увеличивает продукцию свободных радикалов [12], при этом также происходит повышение в плазме крови уровня оксида азота (NO) за счет активации индуцибельной изоформы NO-синтазы, увеличение циклоокигеназы-2 в печени, легких, аорте и лимфоцитах [8]. Есть данные о том, что аминогуанидин (АГ) обратимо инактивирует индуцибельную изоформу NO-синтазы, изменяя конформацию белка и ковалентно связываясь с геном, но без изменения его структуры [1]. Он полностью блокирует ЛПС-индуцированную активацию синтеза индуцибельных белков теплового шока HSP70 во всех типах макрофагов и защищает от ЛПС-индуцированного апоптоза [5]. АГ уменьшает нарушения функции почек через NO-зависимый механизм при эндотоксемии у кроликов [17], снижает активность миелопероксидазы, уровень малонового диальдегида (МДА) в крови и тканях, экспрессию индуцибельной изоформы NO-синтазы [16]. Целью данного исследования было изучение параметров кислородтранспортной функции крови и прооксидантно-антиоксидантного состояния у кроликов в условиях коррекции L-аргинин-NO системы индуцибельной селективным ингибитором изоформы NO-синтазы АГ через 12 часов после введения ЛПС.

Материалы и методы

Эксперименты проводили на кроликах-самцах (n=17) массой 2.5-3.5 кг, которые содержались в стандартных условиях вивария. ЛПС от *E.coli* (Serotype O111:B4, «Sigma» L-2630) в дозе 500 мкг/кг вводили в краевую вену уха животным первой группы (n=8). АГ разводили в 0.9 % NaCl и доводили раствор с помощью 0.1 Н NaOH до рH=7.4, а затем вводили кроликам второй группы (n=9) под-

кожно в дозе 300 мг/кг за 1 час до ЛПС. Забор смешанной венозной крови из правого предсердия и образцов тканей (аорта, сердце, легкие, печень и почки) осуществляли в условиях адекватной анальгезии (30 мг/кг тиопентала натрия внутривенно) через 12 часов после введения ЛПС. Исследования проводили в соответствии с рекомендациями, подготовленными Европейской комиссией по защите используемых в экспериментах животных, и с разрешения этической комиссии Гродненского государственного медицинского университета.

На микрогазоанализаторе Syntesis-15 «Instrumentation Laboratory» оценивали напряжение кислорода (pO_2), содержание кислорода (C_yO_2), степень оксигенации (SO₂), pH крови, напряжение углекислого газа (рСО₂), концентрацию общей углекислоты плазмы (ТСО₂) и бикарбоната (НСО₂-), реальный и стандартный недостаток/избыток буферных оснований (ABE/SBE), стандартный бикарбонат плазмы (SBC) при температуре 37°C. Сродство гемоглобина к кислороду (СГК) определяли по показателю р50 (рО, крови при 50% насыщении ее кислородом). При стандартных условиях (T=37°C, pH=7.4, pCO₂=40 мм рт.ст.) оценивали $p50_{\text{станд}}$ [13], а затем рассчитывали $p50_{\text{реал}}$ для реальных значений этих факторов по формулам Severinghaus J. W. [14]. Продукцию NO определяли по уровню общих нитритов (NO_3^-/NO_2^-) в плазме крови с помощью реактива Грисса на спектрофотометре «Solar» PV1251С при длине волны 540

Содержание диеновых коньюгатов измеряли спектрофотометрически по интенсивности УФпоглощения после экстракции липидов смесью гептана в изопропиловом спирте в области 232-234 нм [2]. Уровень МДА оценивали с помощью 2'-тиобарбитуровой кислоты по интенсивности развивающейся окраски на «Solar» PV1251С при длине волны 535 нм [11]. Содержание α-токоферола определяли в верхнем гексановом слое на спектрофлуориметре «Hitachi F-4010» при $\lambda_{\text{воз6}}$ =295 и $\lambda_{\text{исп}}$ =326 нм [4]. Активность каталазы оценивали спектрофотометрически по количеству H_2O_2 , израсходованной в реакции с молибденовокислым аммонием, при длине волны 410 нм [6]. Данные результаты представлены в виде $\bar{x} \pm S_{\bar{x}}$, где \bar{x} среднее значение, $S_{\bar{x}}$ ошибка среднего значения. С учетом малых размеров выборки и отсутствия нормального распределения в группах, статистическую значимость оценивали методом непараметрической статистики для независимых выборок (Мапп-Whitney U test). За достоверный принимали уровень статистической значимости p<0.05.

Результаты и обсуждение

В наших исследованиях коррекция L-аргинин-NO системы в условиях введения ЛПС приводит к изменению показателей кислородтранспортной функции крови (табл.1). Наблюдается повышение рН с 7.228 ± 0.02 до 7.333 ± 0.002 ед. (p<0,05), а также увеличение значений ABE на 35.3% (p<0,05), рСО $_2$ на 23.8%. (p<0,05), в сравнении с группой животных, получавших только ЛПС. При окислительном стрессе наблюдается ухудшение кислородтранспортной функции крови, в то время как использование АГ и ЛПС приводит к увеличению показателей C_VO_2 , SO_2 рО $_2$ и гемоглобина на 22.2% (p<0,05), 12.6% (p<0,05), 12.0% (p<0,05) и 9.7% (p<0,05), соответственно.

В условиях направленной коррекции L-аргинин-NO системы при введении эндотоксина отмечается снижение показателя р50 при реальных значениях рH, pCO_2 и температуры на 6.2% (p<0.05) в сравнении с группой животных, получавших только ЛПС, повышение СГК, что соответствует отклонению кривой диссоциации оксигемоглобина при реальных условиях циркуляции влево (рис.1). В то же время, показатель $p50_{\text{станд}}$ остается без изменений.

Применение АГ перед ЛПС приводит к умень-

Таблица 1 — Показатели кислородтранспортной функции крови у кроликов после введения аминогуанидина и липополисахарида $(\bar{x}\pm S_{\bar{x}})$

Показатель	Липополисахарид	Аминогуанидин и липополисахарид
n	8	9
р50 _{реал} , мм рт.ст.	39.2±0.93	36.7±0.38 [#]
р50 _{станд} , мм рт.ст.	29.5±0.45	30.1±0.41
T,eC	39.3±0.12	38.9±0.06 [#]
рН, ед.	7.288±0.02	7.333±0.02 [#]
Гемоглобин, г/л	85.4±2.65	93.7±2.61 [#]
CvO ₂ , %	6.64±0.45	8.10±0.39#
SO ₂ , %	59.76±2.38	67.32±1.45 [#]
MetHb, %	1.08±0.23	1.09±0.06
рО2, мм рт.ст.	38.5±1.45	43.1±1.11 [#]
рСО2, мм рт.ст.	28.2±1.30	34.9±0.67 [#]
НСО3, ммоль/л	13.64±0.59	16.26±1.07
ТСО2, ммоль/л	14.49±0.62	17.30±1.11
АВЕ, ммоль/л	-10.98±0.70	-7.10±0.66 [#]
SBE, ммоль/л	-13.18±0.79	-10.47±1.30
SBC, ммоль/л	15.70±0.59	15.71±1.04
NO ₃ /NO ₂ , мкмоль/л	22.28±1.32	6.34±0.51 [#]

*p<0,05 по отношению к группе введения липополисахарида

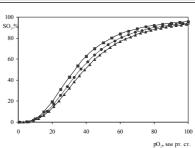


Рисунок 1 - Кривые диссоциации оксигемоглобина у кроликов при реальных значениях рН, рСО₂ и температуры в контроле (0,9% NaCl) (■), 12 часов после введения липополисахарида (◄), аминогуанидин + липополисахарид (·)

шению NO-продуцирующей активности организма: уровень общих нитритов в плазме крови снижается на 71.5% (p<0,05) по отношению к группе животных, получавших только ЛПС (табл. 1).

При окислительном стрессе, индуцированном ЛПС, отмечается нарушение прооксидантно-антиоксидантного баланса в сторону активации свободнорадикальных процессов. В условиях коррекции L-аргинин-NO системы наблюдается снижение прироста уровня диеновых коньюгатов (табл. 2) на 16.1% в аорте (p<0,05), на 14.8% в сердце (p<0,05), на 20.6% в печени (p<0,05) и на 16.7% в почках (p<0,05), а также уменьшение содержания МДА на 23.1% в аорте (p<0,05), на 20.3% в сердце (p<0,05), на 28.1% в легких (p<0,05), на 16.3% в печени (p<0,05) и на 32.6% в почках (p<0,05), по отношению к группе животных, получавших только ЛПС. Одновременно со снижением активности свободнорадикальных процессов отмечается повышение уровня α -токоферола (рис. 2) с 8.0 ± 0.22 до 9.2 ± 0.16 мкмоль/г в аорте (p<0,05), с 4.8 ± 0.25 до 7.6 ± 0.21 мкмоль/г в сердце (p<0,05), с 7.1 ± 0.24 до 7.9 ± 0.18 мкмоль/г в легких (p<0,05), c 5.1 ± 0.36 до 6.6 ± 0.21 мкмоль/г в печени (p<0,05), с 6.7 ± 0.25 до 7.8 ± 0.18 мкмоль/ Γ в почках (p<0,05) и активности каталазы (рис. 3) с 1.6 ± 0.15 до 3.5 ± 0.21 ммоль H_2O_2 /мин/г белка в аорте (p<0,05), с 2.3 ± 0.33 до 3.0 ± 0.16 ммоль H_2O_2 /мин/г белка в сердце (p<0,05), с 1.2 ± 0.23 до 2.7 ± 0.17 ммоль H_2O_2 /мин/г белка в легких (p<0.05), с 1.9 ± 0.25 до 2.8 ± 0.19 ммоль H_2O_2 мин/г белка в печени (p<0,05), с 3.0 ± 0.19 до 3.9 ± 0.13 ммоль H_2O_2 /мин/г белка в почках (p<0,05), в сравнении с группой ЛПС.

Таблица 2 — Изменение содержания диеновых коньюгатов и малонового диальдегида в тканях у кроликов после введения аминогуанидина и липополисахарида $(\bar{x}\pm s_z)$

Показатель		Липополисахарид	Аминогуанидин и липополисахарид
n		8	9
Диеновые	Аорта	3.2±0.13	$2.7 \pm 0.10^{\#}$
конъюгаты,	Сердце	2.9±0.13	$2.5 \pm 0.08^{\#}$
$\Delta D_{233}/\Gamma$	Легкие	2.8±0.17	2.5 ±0.15
	Печень	3.8±0.33	3.0±0.12 [#]
	Почки	3.8±0.19	3.1±0.12 [#]
Малоновый	Аорта	4.0±0.11	3.1±0.14 [#]
диальдегид,	Сердце	2.6±0.11	2.3±0.15 [#]
мкмоль/г	Легкие	4.1±0.09	2.9±0.18 [#]
	Печень	1.7±0.08	1.4±0.06 [#]
#	Почки	4.1±0.07	2.8±0.18 [#]

*p<0,05 по отношению к группе введения липополисахарида

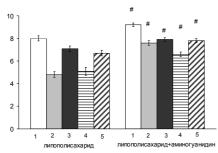


Рисунок 2 - Изменение содержания α-токоферола в тканях у кроликов после введения аминогуанидина и липополисахарида. По оси ординат — содержание α-токоферола, мкмоль/г; по оси абсцисс — гомогенаты тканей: 1 — аорта, 2 — сердце, 3 — легкие, 4 — печень, 5 — почки. Примечание: "p<0,05 по отношению к группе введения липополисахарида

В наших экспериментах АГ, введенный перед инъекцией ЛПС, снижает активность свободнорадикальных процессов и повышает уровень антиоксидантных факторов защиты. Известно, что ЛПС является индуктором индуцибельной изоформы NO-синтазы, под действием которой вырабатывается большое количество NO, обладающего цитотоксическим действием, так как при взаимодействии с супероксид анионом образуется мощный окислитель пероксинитрит [9]. Очевидно, эффекты АГ при окислительном стрессе связаны с уменьшением стабильных метаболитов NO, а также продукции свободнорадикальных молекул (O_2^{-1}) , и повышением активности супероксиддисмутазы [3].

По результатам наших исследований АГ через NO-зависимый механизм улучшает показатели кислородтранспортной функции крови, повышает СГК и участвует в поддержании прооксидантно-антиоксидантного баланса организма через 12 часов после инъекции ЛПС. Эндотоксин уменьшает венозное рО, в почечных сосудах и доставку кислорода к тканям [10], в то время как АГ улучшает доставку и потребление кислорода при эндотоксемии [15]. Введение селективного ингибитора индуцибельной изоформы NO-синтазы уменьшает избыточную продукцию NO, что видно по снижению уровня общих нитритов в наших исследованиях, влияет на СГК через образование различных NO-производных: метгемоглобин, нитрозогемоглобин, нитрозилгемоглобин, контролируя процессы оксигенации и поддержание прооксидантно-антиоксидантного баланса организма.

Выводы

- 1. Введение селективного ингибитора индуцибельной изоформы NO-синтазы через 12 часов после введения липополисахарида снижает активность свободнорадикальных процессов и повышает уровень антиоксидантных факторов защиты.
- 2. Аминогуанидин через NO-зависимые механизмы влияет на формирование кислородтранспортной функции крови, сродство гемоглобина к кислороду и их участие в оксигенации тканей и поддержании прооксидантно-антиоксидантного баланса организма.

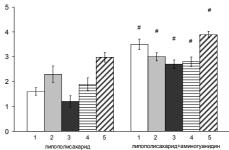


Рисунок 3 - Изменение активности каталазы в тканях у кроликов после введения аминогуанидина и липополисахарида. По оси ординат — содержание каталазы, ммольН,О√мин/г белка; по оси абсцисс — гомогенаты тканей: 1 — аорта, 2 — сердце, 3 — легкие, 4 — печень, 5 — почки. Примечание: "p<0,05 по отношению к группе введения липополисахарида

Литература

- 1. Бонарцев А.П. и др. Влияние хронического введения аминогуанидина на реактивность легочных сосудов у крыс с монокроталиновой моделью легочной гипертензии // Рос. физиол. журн. им. И.М. Сеченова. -2004. -T. 90, № 7. -C. 908-915.
- 2. Камышников В.С. Справочник по клинико-биохимической лабораторной диагностике Минск, 2002. Т. 2. 463 с.
- 3. Орлова Е.А. Комаревцева И.А. Роль NO-синтазы в стимуляции опиатных рецепторов и устойчивости почек к оксидативному стрессу // Укр. биохим. журн. -2004. T. 76, № 1. C. 97-102.
- 4. Рагино Ю.И. и др. Применение новых биохимических способов для оценки окислительно-антиоксидантного потенциала липопротеинов низкой плотности // Клин. лаб. диагн. -2005. -№ 4. -C. 11-15.
- 5. Малышева Е.В. и др. Роль экстраклеточного и внутриклеточного окисда азота в регуляции клеточных ответов макрофагов // Бюл. эксп. биол. мед. -2006. T. 141, № 4. C. 386-388.
- 6. Aruoma O.I., Cuppett S.L Antioxidant Methodology: in vivo and in vitro Concepts // New York, AOCSPress, 1997. 256 p.
- 7. Bryan N.S., Grisham M.B. Methods to detect nitric oxide and its metabolites in biological samples // Free Radic. Biol. Med. -2007. Vol. 43, \mathbb{N}_2 5. P. 645-657.
- 8. Shen K.P. et al. Eugenosedin-A amelioration of lipopolysaccharide-induced up-regulation of p38 MAPK, inducible nitric oxide synthase and cyclooxygenase-2 $/\!/$ J. Pharm. Pharmacol. 2007. Vol. 59, No 6. P. 879-889.
- 9. Kawano T. et al. iNOS-derived NO and nox2-derived superoxide confer tolerance to excitotoxic brain injury through peroxynitrite // J. Cereb. Blood Flow Metab. − 2007. − Vol. 27, № 8. − P. 1453-1462.
- 10. Mik E.G., Johannes T., Ince C. Monitoring of renal venous pO_2 and kidney oxygen consumption in rats by a near-infrared phosphorescence lifetime technique // Am. J. Physiol. Renal. Physiol. -2008. Vol. 294, N_2 3. F. 676-681.
- 11. Rice-Evans C.A., Diplock A.T., Symons M.C.R Laboratory techniques in biochemistry and molecular biology: techniques in free radical research Elsevier, 1991. 291 p.
- 12. Victor V.M. et al. Role of free radicals in sepsis: antioxidant therapy // Curr. Pharm. Des. -2005. Vol. 11, No 24. P. 3141-3158.
- 13. Scheid P., Meyer M. Mixing technique for study of oxygenhemoglobin eguilibrium: a critical evaluation // J. Appl. Physiol. 1978. Vol. 45, № 5. P. 616-622.
- 14. Severinghaus J.W. Blood gas calculator // J. appl. Physiol. 1966. Vol. 21, N2 5. P. 1108-1116.
- 15. Tang H.X., Fan X.M. Effect of dexamethasone, aminoguanidin, amrinone on oxygen utilization in endotoxin shock rabbits // Zhonghua Er. Ke. Za. Zhi. -2003. Vol. 41, N2 4. P. 282-285.
- 16. Ogetman Z. et al. The effect of aminoguanidine on blood and tissue lipid peroxidation in jaundiced rats with endotoxemia induced with LPS // J. Invest. Surg. -2006. Vol. 19, N 1. P. 19-30.
- 17. Wang L., Fan X.M., Tang H.X. Effects of aminoguanidine in different dosages on renal function in endotoxin induced rabbits shock model // Zhonghua Er. Ke. Za. Zhi. 2004. Vol. 42, № 3. Р. 206-209. Поступила 08.04.09