doi:10.25298/2221-8785-2023-21-1-85-88

# СОСТОЯНИЕ ПРООКСИДАНТНО-АНТИОКСИДАНТНОЙ СИСТЕМЫ КРОВИ У ДЕТЕЙ С ВНЕБОЛЬНИЧНОЙ ПНЕВМОНИЕЙ

И. В. Парфёнова, Н. А. Максимович

Гродненский государственный медицинский университет, Гродно, Беларусь



Цель исследования. Изучить состояние прооксидантно-антиоксидантной системы крови у детей с внебольничной пневмонией.

Материал и методы. Проведено исследование прооксидантно-антиоксидантной системы крови у 100 детей в возрасте от 10 до 17 лет с внебольничной пневмонией (ВП).

Результаты. Установлено, что внебольничная пневмония у детей сопровождается снижением антиоксидантной защиты и значительным усилением процессов липопероксидации, зависящих от вида пневмонии.

Выводы. Развитие окислительного стресса, сопровождающегося увеличением в крови прооксидантов и снижение факторов антиоксидантной защиты — один из важных и значимых патогенетических механизмов формирования внебольничной пневмонии у детей.

Ключевые слова: внебольничная пневмония, перекисное окисление липидов, антиоксидантная защита, дети.

Для цитирования: Парфёнова, И. В. Состояние прооксидантно-антиоксидантной системы крови у детей с внебольничной пневмонией / И. В. Парфёнова, Н. А. Максимович // Журнал Гродненского государственного медицинского университета. 2023. Т. 21, № 1. С. 85-88. https://doi.org/10.25298/2221-8785-2023-21-1-85-88

#### Введение

Внебольничная пневмония в педиатрической практике считается одной из актуальных проблем. В последние годы отмечается рост заболеваемости ВП у детей, относительно высокой остается смертность от данного заболевания. Во всем мире около 120,4 млн случаев внебольничной пневмонии диагностируются ежегодно у детей в возрасте до пяти лет, из которых 14,1 млн — тяжелые, требующие стационарного лечения [1, 2, 3].

Большинство заболеваний респираторного тракта сопровождаются интенсификацией свободно-радикальных процессов на разных уровнях биологической организации организма с одновременным напряжением и последующим угнетением разных звеньев антиоксидантной защиты, что приводит к развитию оксидативного стресса — дисбаланса в системе активных форм кислорода и антиоксидантной защиты организма [4, 5].

В обычных условиях перекисное окисление липидов (ПОЛ) непрерывно протекает во всех тканях и органах человека, не приводя к развитию радикального повреждения, так как низкий уровень продукции радикалов-инициаторов обеспечивается сбалансированной многоуровневой антиоксидантной системой защиты [6]. При ее ослаблении или истощении длительная активация процессов ПОЛ приводит к повреждению мембранных структур и накоплению продуктов перекисной денатурации липидов и белков. Известно, что в процессе развития воспаления в организме синтезируется и накапливается множество биологически активных веществ, которые, с одной стороны, обеспечивают защитную функцию, с другой, при избыточном их накоплении в крови и тканях, могут выступать как триггеры и участники вновь формирующихся патологических процессов, способствующих дополнительной альтерации [7].

Исходя из этого, актуально изучение состояния прооксидантно-антиоксидантной системы крови у детей с внебольничной пневмонией.

**Цель исследования** — изучить состояние прооксидантно-антиоксидантной системы крови у детей с внебольничной пневмонией.

# Материал и методы

Обследование проводили на базе учреждения здравоохранения «Гродненская областная детская клиническая больница» 4-го педиатрического отделения в период с 2017 по 2019 гг. В исследование были включены 100 детей, среди них 43 мальчика и 57 девочек, средний возраст 12,8±1,5 года. Все обследованные дети были разделены на 3 группы. Первую группу составили 40 дети с очаговой пневмонией, во 2 группу вошли 53 пациента с сегментарной пневмонией, в 3 группе наблюдались 7 чел. с долевой пневмонией. Контрольную группу составили 30 практически здоровых детей. Группы обследованных детей не различались между собой по возрасту и массо-ростовому показателям (р>0,05). Критерии для включения в группу исследования: возраст детей от 10 до 17 лет; рентгенологически подтвержденная пневмония; наличие информированного согласия родителей (законных представителей) на участие ребенка в исследовании. Критерии исключения пациентов из основной группы: наличие верифицированного поражения сердечно-сосудистой системы, обострения хронических заболеваний, имеющих острую патологию со стороны ЛОР-органов и не входящих в группу часто и длительно болеющих.

Диагноз внебольничной пневмонии устанавливали на основании клинико-рентгенологических и лабораторных данных в соответствии с Международной классификацией болезней, травм и причин смерти X пересмотра (МКБ-10,1992). Пациентов включали в исследование при рентгенологической верификации диагноза.

Для оценки выраженности процессов перекисного окисления липидов определяли уровень первичных продуктов – диеновых конъюгатов (ДК) и малонового диальдегида (МДА), поскольку в биологических мембранах окислению подверга-

ются преимущественно полиненасыщенные жирные кислоты и обнаружение диеновой конъюгации — это чувствительный тест на образование свободных радикалов в крови. Для количественной характеристики процессов ПОЛ использовали показатели Уф-поглощения липидных экстрактов при длине волны 233 нм, соответствующие поглощению соединений с коньюгированным типом связи. Расчет проводили в единицах оптической плотности на 1 мл плазмы. В плазме крови определяли содержание малонового диальдегида с помощью тиобарбитуровой кислоты.

Состояние антиоксидантной защиты (АОЗ) оценивали по концентрации каталазы, восстановленного глутатиона, церулоплазмина. Данные показатели изучали в плазме и эритроцитах крови с использованием классических методов [8].

Статистическую обработку результатов исследования проводили с помощью стандартной лицензионной программы «Statistica 10.0» (StatSoft Inc., USA), вычисляя Ме (Q25-Q75), где Ме – медиана показателя; (Q25-Q75) – интерквартильный размах показателя. Различия между группами оценивали с помощью критерия Манна-Уитни, достоверными считались результаты при р<0,05. Связь между разными признаками в исследуемой выборке определялась с помощью корреляционного анализа величиной коэффициента корреляции Спирмена (R).

# Результаты и обсуждение

При исследовании ПОЛ установлено, что уровень диеновых конъюгатов и малонового диальдегида в плазме и эритроцитах крови у пациентов с ВП был выше, чем в группе условно здоровых детей (табл. 1).

**Таблица 1.** – Показатели активности перекисного окисления липидов в крови пациентов с внебольничной пневмонией Me (Q25-Q75)

**Table 1.** – Indicators of the activity of lipid peroxidation in the blood of patients with community-acquired pneumonia Me (Q25-Q75)

| Показатель                       | Основная<br>группа, n=100 | Контрольная группа, n=30 | p      |
|----------------------------------|---------------------------|--------------------------|--------|
| ДК в эритроцитах,<br>ЕД/мл       | 13,1 (10,0; 15,3)         | 7,2 (6,6; 7,9)           | <0,001 |
| МДА в эритро-<br>цитах, мкмоль/л | 13,7 (9,4; 16,5)          | 3,8 (2,4; 5,0)           | <0,001 |
| МДА в плазме, мкмоль/л           | 4,4 (2,9; 5,6)            | 1,5 (1,2; ,9)            | <0,001 |

Примечание – п – количество пациентов в группах

Установлено, что у пациентов с ВП уровень ДК в эритроцитах был в 1,8 раза выше, чем у детей в контрольной группе (p<0,001), что указывает на активность свободно-радикальных окислительных процессов в ходе развития воспалительного процесса в легочной ткани. Уровень МДА в эритроцитах и в плазме крови оказался выше, чем в контрольной группе (p<0,001).

Оценка функционального состояния антиоксидантной системы организма у обследованных

детей показала следующие результаты (табл. 2). Установлено, что у детей с ВП имеют место нарушения в системе АОЗ организма. Обеспеченность эритроцитов каталазой и восстановленным глутатионом у детей данной группы была на 52% ниже (p<0,001), уровень церулоплазмина в плазме на 14% ниже, чем у детей в контрольной группе.

**Таблица 2.** – Показатели антиоксидантной защиты у детей с внебольничной пневмонией Ме (Q25; Q75)

*Table 2.* – Indicators of antioxidant protection in children with community-acquired pneumonia Me (Q25; Q75)

| Показатель                                           | Основная группа, n=100  | Контрольная группа, n=30 | p      |
|------------------------------------------------------|-------------------------|--------------------------|--------|
| Каталаза в эритроцитах, ммоль ${\rm H_2O_2/muh/rHs}$ | 21,8<br>(19,3; 41,2)    | 49,0<br>(45,1; 56,1)     | <0,001 |
| Восстановленный глутатион в эритроцитах, ммоль/гНв   | 24,6<br>(9,4; 29,3)     | 50,9<br>(45,7; 55,6)     | <0,001 |
| Церулоплазмин<br>плазмы, мг/мл                       | 277,0<br>(249,0; 305,0) | 322,0<br>(311,0; 338,0)  | <0,001 |

Примечание – п – количество пациентов в группах

Низкая активность факторов антиоксидантной защиты на фоне интенсивности процессов перекисного окисления липидов свидетельствует о развитии окислительного стресса у детей с внебольничной пневмонией.

Проанализировано состояние прооксидантно-антиоксидантной системы организма в зависимости от распространенности воспалительного процесса в легочной ткани. Во всех трех группах наблюдения исходные значения показателей отличались от значений в контрольной группе (табл. 3).

В исследовании установлено увеличение уровня ДК у пациентов с сегментарными и долевыми пневмониями в 1,7 раза относительно группы детей с очаговыми пневмониями (p<0,001) и контрольной группы (p<0,001).

Содержание малонового диальдегида в эритроцитах у детей с сегментарными и долевыми пневмониями возрастала в 1,8 раза по сравнению с группой пациентов с очаговыми пневмониями (p<0,001) и в 4,2 раза — с контрольной группой (p<0,001). Содержание малонового диальдегида в плазме у детей с сегментарными и долевыми пневмониями возрастала в 1,8 раза по сравнению с группой пациентов с очаговыми пневмониями (p<0,001) и в 3,3 раза — с контрольной группой (p<0,001).

Уровень ДК и МДА в эритроцитах и плазме крови у детей с сегментарными и долевыми пневмониями не различался между собой и был выше p<0,001, чем у детей в контрольной группе.

В состоянии антиоксидантной защиты отмечалась обратная тенденция: с увеличением объема воспалительного процесса в легочной ткани ее активность уменьшалась, что связано с истощением антиоксидантной системы организма при более обширном воспалительном процессе.

**Таблица 3.** – Показатели прооксидантно-антиоксидантного состояния организма у детей с внебольничной пневмонией в зависимости от распространенности воспалительного процесса в легочной ткани Me (Q25; Q75)

**Table 3.** – Indicators of the pro-oxidant-antioxidant state of the body in children with community-acquired pneumonia, depending on the prevalence of the inflammatory process in the lung tissue

|                                                     | Основная группа, n=100  |                                                    |                                                                                     | Контрольная    |
|-----------------------------------------------------|-------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|----------------|
| Показатель                                          | очаговая,               | сегментарная,                                      | долевая,                                                                            | группа,        |
|                                                     | n=40 (2)                | n=53 (3)                                           | n=7 (4)                                                                             | n=30 (1)       |
| ДК в эритроцитах,                                   | 9,9                     | 13,7                                               | 14,4                                                                                | 7,2            |
| ЕД/мл                                               | (8,9; 13,2)             | (12,2; 14,8)                                       | (12,4; 16,3)                                                                        | (6,6; 7,9)     |
| МДА в эритроцитах, мкмоль/л                         | 8,8                     | 15,2                                               | 15,9                                                                                | 3,8            |
|                                                     | (7,7; 11,8)             | (12,4; 17,6)                                       | (12,6; 17,7)                                                                        | (2,4; 5,0)     |
| МДА в плазме, мкмоль/л                              | 2,6                     | 4,9                                                | 4,6                                                                                 | 1,5            |
|                                                     | (1,9; 4,4)              | (4,1; 6,3)                                         | (4,1; 6,3)                                                                          | (1,2-1,9)      |
| Каталаза в эритроцитах, ммоль $H_2O_2$ /мин/г $H$ в | 41,8                    | 21,6                                               | 19,4                                                                                | 49,0           |
|                                                     | (22,3; 44,8)            | (18,2; 22,0)                                       | (18,3; 22,3)                                                                        | (45,1; 56,1)   |
| Восстановленный глутатион в эритроцитах, ммоль/гНв  | 28,8                    | 26,5                                               | 26,4                                                                                | 50,9           |
|                                                     | (27,7; 35,3)            | (24,4; 30,0)                                       | (23,3; 29,7)                                                                        | (45,7; 55,6)   |
| Церулоплазмин плазмы, мг/мл                         | 303,0                   | 261,0                                              | 287                                                                                 | 322,0          |
|                                                     | (286,0; 312,0)          | (235,0; 277,0)                                     | (250,0; 293,0)                                                                      | (311,0; 338,0) |
| p                                                   | p <sub>1-2</sub> <0,001 | p <sub>1-3</sub> <0,001<br>p <sub>2-3</sub> <0,001 | $\begin{array}{c} p_{1.4} < 0,001 \\ p_{2.4} < 0,001 \\ p_{3.4} > 0,05 \end{array}$ |                |

Примечание – п – количество пациентов в группах

При ВП в организме пациента запускается воспалительная реакция, которая инициирует усиление перекисного окисления липидов и способствует развитию дисфункции в системе антиоксидантной защиты.

Во всех группах наблюдения активность восстановленного глутатиона была сниженной у детей с очаговой пневмонией на 43% (p<0,001), с сегментарными пневмониями – на 48% (p<0,001), с долевыми – на 49% (p<0,001) по сравнению с контрольной группой. Активность каталазы во 2 и 3 группах наблюдения была снижена в 2,2 раза (p<0,001), церулоплазмина во 2 группе – на 19%, в 3 группе – на 11% (p<0,001) по сравнению с контрольной группой.

Пониженная активность восстановленного глутатиона, каталазы в эритроцитах и церулоплазмина в плазме при увеличенном содержании диеновых конъюгатов и малонового диальдегида в крови детей с внебольничной пневмонией может свидетельствовать о напряжении в системе антиоксидантной защиты.

Установлены прямая корреляционная зависимость между распространенностью воспалительного процесса в легочной ткани и уровнем ДК эритроцитов (R=0,50 p<0,001), МДА эритроцитов (R=0,55 p<0,001) и обратная корреляционная зависимость между формой воспалительного процесса в легочной ткани и активностью ка-

# Литература

Крамаев, С. А. Место азитромицина в лечении внебольничной пневмонии у детей / С. А. Крамаев, Л. В. Закордонец // Актуальная инфектология. – 2020. – Т. 8, № 1. – С. 38-44. – doi: 10.22141/2312-413x.8.1.2020.196170. – edn: MZZREV.

талазы эритроцитов (R=0,57 p<0,001).

Таким образом, у детей с внебольничной пневмонией выявлены активация процессов перекисного окисления липидов, снижение обеспеченности антиоксидантной защиты, зависящие от распространенности воспалительного процесса в легочной ткани. Полученные данные указывают на нарушения в прооксидантно-антиоксидантной системе организма в сторону повышения свободных радикалов и угнетения АОЗ у детей с внебольничной пневмонией.

#### Выводы

1. Установлено, что у детей с внебольничной пневмонией выявлены нарушения в состоянии прооксидантно-антиоксидантной системы организма в сторону увеличения содержания первичных (ДК) и конечных ТБК-активных продуктов перекисного окис-

ления липидов (МДА) и снижения факторов антиоксидантной защиты (каталазы, восстановленного глутатиона и церулоплазмина), что доказывает взаимосвязь между прооксидантно-антиоксидантным равновесием организма.

- 2. Повышение продуктов ПОЛ и угнетение факторов антиоксидантной защиты зависит от распространенности воспалительного процесса в легочной ткани.
- 3. При сегментарной и долевой пневмонии наиболее выраженный дисбаланс установлен в системе ПОЛ-АОЗ достоверное повышение ДК и МДА в 3,2 раза по отношению к группе практически здоровых детей и в 1,8 раза по отношению к группе с очаговыми пневмониями; восстановленного глутатиона в 1,9 и 1,7 раза; снижение активности каталазы в 2,2 и 1,9 раза; церулоплазмина в 1,2 и 1,1 раза, соответственно, показатели, которые характеризуют активность воспалительного процесса и могут стать прогностическим критерием заболевания.
- 4. Выявлена взаимосвязь между концентрацией продуктов ПОЛ и антиоксидантным обеспечением организма, распространенностью воспалительного процесса в легочной ткани обследованных детей, что подтверждает их патогенетическую взаимосвязь и не исключает назначение антиоксидантов для предотвращения всех нарушений при внебольничной пневмонии.
- Levels and trends in child mortality. Estimates developed by the UN Inter-agency group for child mortality estimation. Report 2020 [Electronic resource] // United Nations Children's Fund. – Mode of access: https://www.unicef. org/reports/levels-and-trends-child-mortality-report-2020. – Date of access: 05.01.2023.

#### Оригинальные исследования

- Клинико-этиологическая характеристика пневмонии у детей с неблагоприятным исходом инфекционных заболеваний / Е. А. Козырев [и др.] // Журнал инфектологии. – 2022. – Т. 14, № 4. – С. 51-60. – doi: 10.22625/2072-6732-2022-14-4-51-60. – edn: OTESHK.
- Конопля, Е. Н. Иммунные и метаболические параметры плазмы крови и эритроцитов у больных внебольничной пневмонией / Е. Н. Конопля, Д. В. Поляков // Курский научно-практический вестник «Человек и его здоровье». 2018. № 3. С. 38-46. doi: 10.21626/vestnik/2018-3/06. edn: YNMNZB.
- Антиоксидантная терапия важнейший компонент патогенетического лечения воспалительных заболеваний / Г. Гречканев [и др.] // Врач. – 2015. – № 3. – С. 54-59. – edn: TOESJZ.
- Соодаева, С. К. Роль свободнорадикального окисления в патогенезе ХОБЛ / С. К. Соодаева // Атмосфера. Пульмонология и аллергология. – 2002. – № 1. – С. 24-25.
- Hinsbergh, V. W. M. van. Endothelium role in regulation of coagulation and inflammation / V. W. M. van Hinsbergh // Seminars in Immunophathology. 2012. Vol. 34, № 1. P. 93-106.
- 8. Зинчук, В. В. Прооксидантно-антиоксидантное состояние организма при введении липополисахарида в условиях коррекции сродства гемоглобина к кислороду и L-аргинин-NO-системы / В. В. Зинчук // Бюл. эксперим. биологии и медицины. 2001. Т. 131, № 1. С. 39-42.

# References

 Kramarov SA, Zakordonets LV. Place of azithromycin in the treatment of community-acquired pneumonia in children. Actual *infectology*. 2020;8(1):38-44. doi: 10.22141/2312-413x.8.1.2020.196170. edn: MZZREV. (Russian).

- UNICEF, WHO, World Bank Group and United Nations. Levels and trends in child mortality. Estimates developed by the UN Inter-agency Group for Child Mortality Estimation. Report 2020 [Internet]. Available from: https://www.unicef.org/reports/levels-and-trends-child-mortality-report-2020
- Kozyrev EA, Babachenko IV, Karev VE, Pimenov DA, Sharipova EV, Orlova ED, Tian NS. Clinical and etiological characteristics of pneumonia in children with a poor outcome of infectious diseases. *Journal Infectology*. 2022;14(4):51-60. doi: 10.22625/2072-6732-2022-14-4-51-60. edn: OTESHK. (Russian).
- Konoplya EN, Polyakov DV. Immune and metabolic parameters of blood plasma and erythrocytes in patients with community-acquired pneumonia. *Kursk Scientific and Practical Bulletin "Man and His Health"*. 2018;(3):38-46. doi: 10.21626/vestnik/2018-3/06. edn: YNMNZB. (Russian).
- Grechkanev G, Motovilova T, Garevskaya Y, Churikova M, Boichenko T, Nikishov N. Antioxidant therapy is the most important component of pathogenetic treatment for inflammatory diseases. *Vrach.* 2015;26(3):54-58. edn: TOESJZ. (Russian).
- 6. Soodaeva SK. Rol svobodnoradikalnogo okislenija v patogeneze HOBL. *Atmosfera. Pulmonologija i allergologija*. 2002;(1):24-25. (Russian).
- van Hinsbergh VW. Endothelium--role in regulation of coagulation and inflammation. *Semin Immunopathol*. 2012;34(1):93-106. doi: 10.1007/s00281-011-0285-5.
- 8. Zinchuk VV. Prooksidantno-antioksidantnoe sostojanie organizma pri vvedenii lipopolisaharida v uslovijah korrekcii srodstva gemoglobina k kislorodu i L-arginin-NO-sistemy. *Bulletin of Experimental Biology and Medicine*. 2001;131(1):39-42.

# THE STATE OF THE PROOXIDANT-ANTIOXIDANT BLOOD SYSTEM IN CHILDREN WITH COMMUNITY-ACQUIRED PNEUMONIA

I. V. Parfenova, N. A. Maksimovich

Grodno State Medical University, Grodno, Belarus

Aim. To study the state of the prooxidant-antioxidant blood system in children with community-acquired pneumonia. Material and methods. A study of the prooxidant-antioxidant system of the blood in 100 children aged 10 to 17 years with community-acquired pneumonia was carried out.

Results. It was found that community-acquired pneumonia in children is accompanied by a decrease in antioxidant protection and a significant increase in lipoperoxidation processes, depending on the type of pneumonia.

Conclusions. The development of oxidative stress, accompanied by an increase in pro-oxidants in the blood and a decrease in antioxidant protection factors, is one of the important and significant pathogenetic mechanisms of community-acquired pneumonia in children.

Key words: community-acquired pneumonia, lipid peroxidation, antioxidant protection, children.

For citation: Parfenova IV, Maksimovich NA. The state of the prooxidant-antioxidant blood system in children with community-acquired pneumonia. Journal of the Grodno State Medical University. 2023;21(1):85-88. https://doi.org/10.25298/2221-8785-2023-21-1-85-88

**Конфликт интересов**. Авторы заявляют об отсутствии конфликта интересов. **Conflict of interest.** The authors declare no conflict of interest.

Финансирование. Исследование проведено без спонсорской поддержки. Financing. The study was performed without external funding.

**Соответствие принципам этики.** Исследование одобрено локальным этическим комитетом. **Conformity with the principles of ethics.** The study was approved by the local ethics committee.

### Об авторах / About the authors

Парфёнова Инна Владимировна / Parfenova Inna, e-mail: ped1@grsmu.by, ORCID: 0000-0001-5578-8833 Максимович Николай Андреевич / Maksimovich Nikolai, e-mail: drmaximovich@mail.ru, ORCID: 0000-0002-5907-5942

Поступила / Received: 16.12.2022

Принята к публикации / Accepted for publication: 25.01.2023